

Dr. James Robart 912 N Missouri Street Potosi, Missouri 63664

Jim@DrRobart.com

Patient: First/Last Name

Variants that Impact Gut Health & Digestion

For those with health challenges, gut inflammation, dysbiosis and digestive disturbances are often common. If there are issues here, this may be step number one of many steps in supporting the patient/client. Proper function of the intestinal tract is critical for the absorption of nutrients. Unfortunately, there are many genetic variants that can impact digestive function.

Inflammation from peroxynitrite can damage the delicate intestinal lining. SNPs that reduce Glutathione, SOD, NOS and BH4, as well as the CBS and BHMT SNPs that will increase ammonia, will increase the peroxynitrite and cause damage to the gut.

When there are low methyl groups as a result of MTHFR, along with SNPs in HNMT and ABP1 (that both degrade histamine) the high histamine will create higher levels of zonulin, which irritates the intestinal tract and potentially contributes to candida and leaky gut.

Variants in the HLA genes may contribute to gluten intolerance, and further gut inflammation.

And finally, variants in the FUT2 gene may impact the production of prebiotics, to support probiotics. Variants here may cause disruption in the good bacteria of the gut and impair B12 assimilation. Impaired B12, among other things, may reduce the production of methyl groups, thus resulting in less than optimal histamine clearing.

All of these factors should be considered when assessing gut health. Supporting gut health, if an issue, is likely the first step needed in supporting the patient/client. This would include, but are not limited to, reducing histamine, eliminating gluten if an issue, reducing peroxynitrite by supporting variants in SOD, GSH, NOS, CBS, BHMT, and creating BH4.

Gene Name	Variants	Metrics								
HLA				Product Name	SNP Total	Lab Total	Symptoms			
				Histamine Scavenger	4.17	#N/A	#N/A			
HLA-DQA2 (rs2858331)		AA 35.1%	Var	iants in these genes may increase the chan	ces of Celiac Dise	ease or gluten	intolerance. Other			
HLA-DQA1 (rs2187668)		CC 79.0%	factors that may impact gut health are FUT variants that impact probiotics, HNMT and ABP1 variants that lessen histamine degradation and consequently cause zonulin production, low folate or high peroxynitrite.							
HLA-DQA2 (rs7454108)	1	TC 19.3%								
HLA-DQB1 (rs7775228)		TT 74.4%								
HLA-DRA (rs2395182)	1	GT 32.5%								
HLA Enzymes	80%		With two HLA variants, there is a possibility for gluten intolerance, especially if it's the HLA DQA1 Additionally, if the gut is damaged from peroxynitrite and zonulin, gluten sensitivity can be worse							
KIAA1109										
KIAA1109 (rs6822844)		GG 72.7%	The	e KIAA1109 gene is associated with suscepti	bility to celiac di	sease. Celiac d	isease is a common			
KIAA1109 (rs13119723)		AA 72.3%	small intestinal inflammatory condition induced by dietary wheat, rye, and barley. Variant							
			ger	ie may increase the chances of cellac Disea	se.					
KIAA1109	100%									

MCM6			
MCM6 (rs182549)	2	TT 35.3%	The MCM6 gene is a protein coding gene. Single nucleotide polymorphisms in this gene can
MCM6 (rs4988235)	2	AA 34.7%	impact the neighboring LCT gene. The LCT gene provides instructions for making an enzyme called lactase.
			Lactase breaks down lactose found in milk and dairy products into smaller sugars called glucose and galactose for absorption. The body then absorbs these simpler sugars into the bloodstream. Lactose intolerance in adulthood is caused by gradually decreasing activity of the LCT gene after infancy. Variations in the MCM6 genes cause the LCT gene to remain active during adulthood. Because of this, individuals with increased variants are more likely able to digest the lactose found in milk and dairy products.
Lactose Intolerance	0%		There are 4 variants in the MCM6 gene. With 4 variants, there is a high likelihood of being lactose tolerant.
Peanut Allergy			
HLA-DQA2 (rs9275596)	1	TC 43.9%	Studies have shown that peanut allergies are one of the most common food allergies.
HLA-DRA (rs7192)	1	GT 45.4%	Peanuts are not the same as tree nuts such as almonds, cashews, and walnuts. Peanuts grow
			underground and are part the legume family. Other examples of legumes include beans, peas, lentils and soybeans.
			Variants in rs9275596 and rs7192 are associated with the increased susceptibility of developing a peanut allergy is individuals with European ancestry.
Peanut Allergy	50%		With two variants, this individual has an increased risk of developing a peanut allergy.
Caffeine Consumption		•	
AHR (rs4410790)	1	TC 46.6%	The AHR gene contains the instructions for a protein that helps regulate the amount of certain
CYP1A2 (rs2472297)	1	CT 32.2%	proteins. One of these proteins includes an enzyme, called CYP1A2.
			The CYP1A2 gene contains the instructions for an enzyme that breaks down many substances, including caffeine. This enzyme is one of the many cytochrome P450 enzymes.
			Studies have shown that variants in these SNPs related to a higher consumption of caffeine.
Caffeine Consumption	50%		With 2 variants it is possible that this individual consumes an increased amount of caffeine
Caffeine Metabolization	•	•	
CYP1A2 C164A (rs762551)	2	AA 50.0%	The CYP1A2 gene encodes a member of the cytochrome p450 family of proteins. These proteins
			metabolize nutrients and drugs. One well known substrate of CYP1A2 is caffeine
			Caffeine is a bitter substance that can be found in coffee, tea, soft drinks, chocolate, kola nuts, and certain medicines. It has many effects on the body's metabolism, including stimulating the central nervous system.
			Studies have shown that individuals with variants in this gene are faster metabolizers of caffeine and therefore will feel less of a stimulating effect from caffeine.
Caffeine Metabolization	0%		With 2 variants this individual is likely a fast caffeine metabolizer.

Patient: First/Last Name							
BCMO1							
BCMO1 A379V (rs7501331)		CC 60.3%	всг	MO1 or Beta-Carotene Oxygenase 1 is a prot	tein coding gene	. The protein e	encoded by this
BCMO1 R267S (rs12934922)	1	AT 48.9%	ger	e is a crucial enzyme in beta-carotene meta	bolism to vitam	in A. It catalyze	es the oxidative
BCMO1 (rs4889294)	2	CC 20.1%	pro	cesses such as vision, embryonic developme	ecules. Vitamin / ent, and skin pro	tection. Polym	orphisms in this
BCMO1 (rs11643312)		GG 47.9%	ger	e can affect serum retinol concentration.			
BCMO1 (rs6564862)		CC 44.8%	The	most significant SNPs are BCMO1 A379V rs	7501331, BCMC	01 R267S rs129	34922, and BCMO1
BCMO1 (rs7192178)		AA 35.6%	rs4	389294			
BCMO1 (rs8046134)		GG 60.4%	Res	earch has found that double mutations in b	oth BCMO1 A37	9V rs7501331	and BCMO1 R267S
BCMO1 (rs6564863)	1	TC 43.9%	rs1	2934922 can cause a substantial reduction i	n the conversior	n of beta-carot	ene into retinol l in
BCMO1 (rs117523015)		AA 97.5%	- Fer	hales.			
BCMO1 (rs7202895)		AA 91.6%	Ou	Phase II Lyme study also determined that w	variants in BCMC	01 R267S rs129	34922, and BCMO1
BCMO1 (rs117887860)		CC 99.6%	rs4	889294 were much higher in patients with L	yme Disease.		
BCMO1 (rs4889298)		CC 26.2%					
BCMO1 (rs11865869)		AA 60.4%					
BCMO1 (rs3803651)	2	GG 5.4%					
BCMO1 (rs11647597)	2	GG 5.5%					
PCMO1	78%						
	7870						
FUT2				Product Name	SNP Total	Lab Total	Symptoms
				Pro Flora Max Plus	4.62	#N/A	#N/A
FUT2 (rs492602)	2	GG 22.1%	Var	iants in the FUT2 enzyme may lead to disru	otions in the goo	od intestinal ba	cteria. This enzyme
FUT2 (rs601338)	2	AA 21.5%	var ma	ant may cause a predisposition to Crohn's c v also be related to lowered immune functio	lisease. Monitor on.	gut health wit	h this variant. FUT2
FUT2 (rs602662)	2	AA 24.4%					
FUT2 (rs16982241)		GG 73.4%					
FUT2 (rs281377)		CC 29.9%					
FUT2 (rs1800022)		CC 98.1%					
FUT2 (rs1047781)		AA 98.6%					
FUT2 (rs1800027)		CC 87.0%					
FUT2 (rs1800028)		CC 99.9%					
FUT2 (rs485186)	2	GG 24.5%					
FUT2 (rs603985)	2	CC 24.6%					
FUT2 (rs504963)	2	AA 24.1%					
FUT2	54%						
ABP1 (Histamine Breakdown)				Product Name	SNP Total	Lab Total	Symptoms
				Histamine Scavenger	4.17	#N/A	#N/A
ABP1 (rs10156191)	1	CT 38.1%	Thi	s is the gene that makes the DAO enzyme th	at helps degrad	e histamine. SI	NPs with this gene,
ABP1 (rs1049742)		CC 85.8%	cor	nbined with HNMT genes, and low methyl g	roups, may resu	lt in high hista	mine and high
ABP1 (rs1049793)	1	CG 42.0%	zon	uim.			
ABP1 (rs35070995)		AA 99.8%	Eat	ing less histamine containing and histamine	reducing foods	may be neede	d.
ABP1	80%		Wit is g	h only two variants in the APB1 gene, it wo ood. However, at this time, we do not know most innortant one could be clinically relev	uld seem likely t which SNP is m vant.	he production ost relevant, a	of the DAO enzyme nd homozygosity of

Patient:	First/L	ast N	lame
----------	---------	-------	------

HNMT (Histamine Transferase)	· · · · · · · · · · · · · · · · · · ·		Product Name	SNP Total	Lab Total	Symptoms
			Histamine Scavenger	4.17	#N/A	#N/A
HNMT (rs1020678)	1	TC 47 5%	HNMT produces the enzyme that uses a methy	d group to degra	de histomine i	n the body. The
HNMT (rs1050891)	1	AG 33.8%	ABP1 gene also clears histamine with the DAO	enzyme.		in the body. The
HNMT (rs1349992)	1	GA 47.3%	If there are many SNPs, and low methyl ground	there is the no	tential for high	histomine This
HNMT (rs1378321)	1	AG 33 9%	result in high levels of zonulin, which can cause	e gut inflammatio	on and the pot	ential for leaky g
HNMT (rs1455157)	1	TC 34 4%	Over time, this may contribute to autoimmune	disorders.		
HNMT (rs1455158)	1	CT 34 4%	Avoiding high histamine foods (alcoholic bever	ages and fermer	nted foods) ma	y be helpful as w
HNMT (rs1455162)	1	AG 34.4%	as taking high amounts of Histamine Scavenge	r. Sometimes do	sages need to	be 9 to 12 per da
HNMT (rs1455164)	1	GA 34.6%	the beginning, and then can reduce over time.			
HNMT (rs1455167)	1	TG 34.4%	Histamine Scavenger may need Pro SAMe if th	ere are low meth	hyl groups.	
HNMT (rs1580111)	1	CT 47 4%	If there is a lot of histamine and zonulin, and if	they also have a	an HLA gene, g	uten sensitivity r
HNMT (rs16840064)	-	GG 98.8%	be a problem as well.			
HNMT (rs2198652)	1	CT 34 4%				
HNMT (rs2737385)	1	TG 33 9%				
HNMT (rs3100701)	1	GA 48 1%				
HNMT (rs3100701)	1	GA 34 5%				
HNMT (rs3791235)	1	CA 33 3%				
HNMT (rs3828168)	1	CT 33 7%				
HNMT (rs/2/5861)	1	CT 33.8%				
HNMT (rs4646322)	1					
HNMT (rs4646222)	1	GA 22.8%				
HNMT (rs40540333)	1	GA 33.8%				
HNMT (rs60444277)	1	GG 99 9%				
HNMT (rc002801)	1	TG 24 5%				
1111111 (13333031)	1	10 34.376				
Histamine Clearing (HNMT)	57%					
GRHPR	r	I				
GRHPR (rs2768659)	2	GG 43.9%	GRHPR provides instructions for making the en	zymes glyoxylat	e, and hydroxy	pyruvate reduct
GRHPR (rs309455)		CC 59.0%	This enzyme plays a role in preventing the build Glycolate can be easily eliminated from the bo	dup glyoxylate b dv. This enzvme	y converting it can also conve	into glycolate. ert hvdroxvøvruv
GRHPR (rs309453)		TT 34.4%	to D-glycerate. D-glycerate is eventually conve	rted into glucose	e, by other enz	ymes, and can be
			Variations in this gene can cause a reduction in Glyoxylate builds up and is converted to a com through the kidneys and is either excreted in tl calcium to form calcium oxalate. Calcium oxala of kidney and bladder stones. A diet of low oxalate is suggested if there are v We are not aware of these SNPs being clinically a consideration for someone has health challen verification though OAT testing or other method there SNPs	the conversion pound called ox- ne urine as a was- te is a hard com ariants present. y relevant for Ox nges that cannot ods would be in o	of glyoxylate t alate. The oxal ste product or pound that is t cylate issues, b t be found. If th order, rather tl	o glycolate. ate is then filtere combines with the main compor- the main compor- the main compor- the main composite the main c
GRHPR	67%		chebe official			

Krebs Cycle - Genes that support the production of Acetyl-CoA and ATP

For the body to function properly, fats, carbs and proteins need to be carried into the cell and to be converted into Acetyl-CoA, the first step of the Citric Acid Cycle, for the production of ATP. These genes play a role in this process. If inadequate Acetyl-CoA is made, the individual may present with fatigue. Since ATP is needed for many functions, other parts of the body may suffer as a result with low ATP.

If there are a lot of SNPs here, this very well may be one of the first things that need to be addressed with the gut. If gut issues exist as well, you can work on both the gut and cellular energy at the same time.

Gene Name	Variants	Metrics							
Carnitine Transportation				Product Name	SNP Total	Lab Total	Symptoms		
				Fatty Acid Assist	1.57	#N/A	#N/A		
				Mitochondrial & Energy Assist	8.17	#N/A	#N/A		
				CBS / BHMT Assist	3.19	#N/A	#N/A		
SLC22A5 (rs13180043)		CC 91.9%	The	SLC22A5 gene provides instructions for ma	aking a protein ca	alled OCTN2. 1	his protein is		
SLC22A5 (rs2631367)	1	CG 50.1%	pos	itioned within the cell membrane, where it	transports carni	tine into the c	ell.		
SLC22A5 (rs13180186)		GG 83.6%	Carı	nitine is an amino acid derivative that is syn	thesized in the h	numan body. C	Carnitine is primaril		
SLC22A5 (rs2631361)		CC 37.9%	synt	thesized in the liver and is stored in the tiss keletal and cardiac muscle). Carnitine is rec	ues that use fatt	y acids as thei	r primary fuel (Sucl		
SLC22A5 (rs2631362)		AA 48.4%	cha	in fatty acids for energy production.					
SLC22A5 (rs2631363)		AA 38.1%	Vari	intions in the SLC22A5 gone can result in a	dysfunctional OC	TN2 protoin			
SLC22A5 (rs17622208)	1	GA 48.1%	sho	rtage of carnitine within cells. Without carr	itine, fatty acids	cannot enter	mitochondria. This		
SLC22A5 (rs17689550)		CC 79.2%	may	y cause muscle weakness and hypoglycemia	a. Fatty acids ma	y also build up	in cells and damage		
SLC22A5 (rs2073642)		CC 84.9%		the heart, liver, and muscles.					
SLC22A5 (rs2073643)	1	TC 49.1%	Unc	der certain conditions, the demand for Carn	itine may exceed	d an individual	's capacity to		
SLC22A5 (rs2074610)		TT 99.7%	syn	thesize it, making it a conditionally essentia	1.				
SLC22A5 (rs2631359)		CC 48.5%	Hig	h levels of Adipate, Suberate or Ethylmalon	ate in urine orga	nic acid testin	g may also confirm		
SLC22A5 (rs274549)	2	CC 70.5%	lack	t of carnitine.					
SLC22A5 (rs274550)	2	TT 69.1%	Con	sequently, if there are too many variants, s	upplementation	with Acetyl-L	Carnitine and othe		
SLC22A5 (rs274551)	2	CC 70.5%	nut	rients to support fat transportation/utilizat	ion may be need	led to consum	ed with meals.		
SLC22A5 (rs274557)		TT 37.1%							
SLC22A5 (rs274558)		AA 36.9%							
SLC22A5 (rs274567)		CC 37.9%							
SLC22A5 (rs274570)		CC 48.5%							
SLC22A5 (rs274571)		AA 48.5%							
SLC22A5 (rs4646301)		GG 85.0%							
SLC22A5 (rs635619)		GG 48.5%							
SLC22A5 (rs671473)		CC 48.4%							
SLC22A5 (rs1045020)		CC 79.0%							
SLC22A5 (rs2631366)		CC 99.8%							
SLC22A5 (rs72552726)		GG 99.7%							
SLC22A5 (rs274548)	2	CC 66.0%							
Carnitine Transportation	84%								

PANK				Product Name	SNP Total	Lab Total	Symptoms
				Fatty Acid Assist	1.57	#N/A	#N/A
				A-L-O Formula	0	#N/A	#N/A
PANK1 (rs12412483)		GG 94.6%	This	s gene encodes members of the pantothen	ate kinase family	. Pantothenate	e kinase catalyzes
PANK1 (rs2038921)	2	GG 31.8%	the	ATP-dependent phosphorylation of pantol	henate (vitamin t and rate limitir	B5) to give 4&	prime;- /nthesis of
PANK1 (rs10509577)		AA 88.0%	coe	enzyme A (CoA).		g step in the s	
PANK1 (rs10160034)		CC 79.5%		anzyma ((CoA) is a pantothanic acid derive	d metabolite the	nt is assantial f	or many crucial
PANK1 (rs10881606)		TT 44.2%	cell	lular processes including energy, lipid and a	mino acid metak	olism. About	4% of all known
PANK1 (rs6586201)	1	CT 39.7%	enz	zymes utilize CoA as a cofactor and CoA thic	esters are essen	tial for over 10	0 different react
PANK1 (rs17482070)		AA 82.4%	cysteine, pantothenate, and ATP.	rebs cycle. In nu	mans, con syn	liesis requires	
PANK1 (rs7921294)		GG 16.0%		NK1 ancodes a member of the partethenat	o kinaco family		
PANK1 (rs7091402)		TT 16.0%		NAT encodes a member of the partothenat	e killase laitiliy.		
PANK1 (rs997456)	1	GA 34.2%	PAN	NK2 is the only member of the pantothenat	e kinase family t	o be expressed	l in mitochondria
PANK2 (rs6107373)	1	GA 5.6%	PAN	NK3 is expressed most abundantly in the liv	er		
PANK2 (rs6084513)	2	AA 27.6%		NK4 is most abundant in muscle but is supr	accod in all ticsur		
PANK2 (rs6084506)	1	CT 46.9%		NK4 is most abundant in muscle but is expr	esseu in all tissue	:5.	
PANK2 (rs4815628)	2	CC 28.8%					
PANK2 (rs4815621)	2	GG 50.8%					
PANK3 (rs11952767)		CC 99.0%					
PANK4 (rs7535528)		GG 41.2%					
PANK4 (rs2246732)	1	AG 36.7%					
PANK4 (rs2236395)	1	AG 36.7%					
PANK4 (rs1980789)		AA 91.6%					
PANK1	71%						
PANK2	43%						
PANK3	100%						
PANK4	75%						
Total PANK	61%						

ACAT				Product Name	SNP Total	Lab Total	Symptoms	
				Fatty Acid Assist	1.57	#N/A	#N/A	
				Fatty Acid Liquescense	1.57	#N/A	#N/A	
				Mitochondrial & Energy Assist	8.17	#N/A	#N/A	
				Gastrogest	5.71	#N/A	#N/A	
				ACAT Assist	5.71	#N/A	#N/A	
				Adenosyl-Cobalamin B12 Assist	5.71	#N/A	#N/A	
ACAT1-02 (rs3741049)		GG 78.5%	The	ACAT Gene may be one of the most import	tant, as it suppor	ts the convers	ion of fats and	
ACAT-1 (rs10890819)	2	TT 10.2%	pro	teins into Acetyl-CoA. This may be one of th duction of ATP from the Citric Acid Cycle. Ch	e first variants t becking the Fatty	o support, as i v Acid Metabol	t slows the lism Markers in	a
ACAT-2 (rs3798211)	2	CC 31.1%	Urir	ne Organic Acid test may verify how serious	of a problem AC	CAT is creating.		u
ACAT-1 (rs2280332)		AA 61.8%						
ACAT-2 (rs9347340)	2	CC 55.4%						
ACAT-2 (rs25683)	2	GG 31.4%						
ACAT-2 (rs3465)		GG 38.9%						
ACAT (All Genes)	43%		The thei in A	re are eight variants in the ACAT enzyme. If n support for ACAT is needed. This is the mo CAT1-02 but eight other variants, support n	the variant is th ost significant SN nay be needed.	e first one liste IP for ACAT. If	ed, the ACAT1-0 there are no var	2, riants
ACAT - (Single SNP Most Relevent)	100%		If yo Gen prol The othe	ou want to find out if these SNPs are impact lova Urine Organic Acids, and see if the mar blem. re are no variants in the most clinically sign ers may have an impact. Urine Organic Acid nerous other SNPs.	ing the utilizatio kers for fat usag ificantly ACAT ge testing may inc	n of fats and p e and protein ene. However, licate a proble	proteins, run the usage indicate a many SNPs in th m if there are	ne
SI C16A1				Product Name	SNP Total	Lab Total	Symptoms	
JUIDAI				ACAT Assist	5.71	#N/A	#N/A	
				Carb Assist	0	#N/A	#N/A	
SLC16A1 (rs7169)	2	AA 33.5%	The	protein encoded by this gene modulates th	ne cellular levels	of lactate and	pyruvate.	
SLC16A1 (rs76612089)		CC 96.3%		F			p. j	
SLC16A1 (rs11585690)		AA 95.1%	Pyrı Krel	uvate is the end product of glycolysis, which as cycle when there is sufficient axygen pre	n is then convert sent. When the	ed into acetyl oxygen is insuf	coA that enters ficient, pyruvate	the e is
SLC16A1 (rs71659381)		GG 86.3%	bro	ken down anaerobically, creating lactate.				2.10
SLC16A1 (rs3849174)	1	TG 34.4%	lact	ate is produced by almost all tissues in the	hody with the h	ighest level of	production four	nd in
SLC16A1 (rs12028967)	1	TG 44.0%	mus	scle tissues. Under normal conditions, lactat	te is rapidly clear	red by the live	r.	ina ini
SLC16A1 (rs4301628)	1	CT 43.8%	Vari	ants in this gang may lead to metabolic my	onathy and ever	cise-induced h	wnerinsulinemic	
			hyp	oglycemia.	opatily and exer	cise-induced in	iyperinsumerinc	-
SLC16A1	64%							
ACSL1				Product Name	SNP Total	Lab Total	Symptoms	
				Fatty Acid Assist	1.57	#N/A	#N/A	
				A-L-O Formula	0	#N/A	#N/A	
ACSL1 (rs9997745)	1	GA 24.5%	The	protein encoded by this gene is an isozyme	e of the long-cha	in fatty-acid-co	penzyme A ligas	e
ACSL1 (rs4862417)		AA 55.3%	fam	ily. Although differing in substrate specificit	ty, subcellular lo	calization, and	tissue distributi	ion,
ACSL1 (rs13120078)	1	GA 44.6%	the	reby play a key role in lipid biosynthesis and	fatty acid degra	id fatty acyl-Co idation.	oA esters, and	
ACSL1 (rs12503643)	2	TT 17.1%	1					
ACSL1 (rs41278587)		GG 94.7%	1					
ACSL1 (rs6552828)	2	GG 35.0%	1					
ACSL1 (rs72695682)		CC 90.2%						
ACSL1 (rs72695685)		TT 86.4%	1					
ACSL1	63%		At t lipic be g	his time, no particular SNPs have been spec ls, so these genes are added for general info given to ACAT or carnitine issues when thes	ifically identified ormation and ma e genes have hig	d as having the ay mean that r h amounts of	greatest impac nore weight sho variants.	t on ould
			1					
			If th	ere are many variants, he aware of fat utili	zation impairme	nts		

TALDO1				Product Name	SNP Total	Lab Total	Symptoms	
				A-L-O Formula	0	#N/A	#N/A	
TALDO1 C749776T (rs11246300)		CC 62.7%	TAL	DO1 is a key enzyme in the synthesis of NA	DPH for lipid bio	synthesis. This	enzyme also he	elps
	•		to n	naintain glutathione in a reduced state to p	revent cellular d	amage from o	xygen radicals.	
			In o	ur Phase II Lyme study, we found that varia	nts in TALDO1 w	vere much high	ner in patients w	vith
			Lym	e Disease				
	100%							
TALDOI	10078							

NDUFS				Product Name	SNP Total	Lab Total	Symptoms
				Mitochondrial & Energy Assist	8.17	#N/A	#N/A
				Pro NADH	1.5	#N/A	#N/A
NDUFS1 (rs1044120)		CC 37.5%	ND	UFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5,	NDUFS6, NDUFS	7, and NDUFS	8 encode a protein
NDUFS1 (rs4147727)		AA 32.8%	tha	t is part of a subunit for Complex I.			
NDUFS1 (rs4147720)		AA 33.3%	Cor	nplex I is the first enzyme of the mitochond	lrial electron trar	nsport chain. T	here are over 40
NDUFS1 (rs186057450)		GG 99.8%	sub	units found in Complex I.			
NDUFS1 (rs1801318)		TT 46.9%	The	e electron transport chain consists of a serie	es of redox reacti	ons in which e	lectrons are
NDUFS1 (rs11548670)		AA 93.2%	trar	nsferred from a donor molecule to an accep	otor molecule.		
NDUFS1 (rs4147713)		AA 28.3%	Eac	h electron donor passes electrons to a mor	e electronegative	e acceptor. The	e electronegative
NDUFS1 (rs4147712)		TT 31.5%	acc	eptor then donates these electrons to anot	her acceptor unt	il the electron	s are passed to
NDUFS1 (rs4147709)		CC 31.3%	Pas	sage of electrons between donor and acce	otor releases ene	rgy, which is u	sed to generate a
NDUFS2 (rs10908826)	1	CT 25.1%	pro	ton gradient across the mitochondrial men	brane by “	o;pumping&rd	quo; protons into
NDUFS2 (rs4656994)	1	GA 35.2%	line	intermembrane space. The resulting proto	ii giauleiit is use	u to make ATP	via ATP synthase.
NDUFS2 (rs10797094)	2	AA 35.7%		DH → Complex I → Q → Comple	ex III → cytoc	hrome c →	; Complex IV →
NDUFS2 (rs1136224)		AA 72.4%					
NDUFS3 (rs4147730)		GG 74.5%	Cor	nplexes I, III and IV are the proton pumps, v	while Q and cyto	chrome c are n	nobile electron
NDUFS4 (rs1532163)	2	GG 59.0%	cari	riers.			
NDUFS4 (rs1994648)		AA 64.5%	Var	iations in these genes may cause Complex	to be deficient.		
NDUFS4 (rs2637002)	1	CA 26.0%					
NDUFS4 (rs3103600)	1	GA 38.4%					
NDUFS4 (rs4147735)	1	TG 27.6%					
NDUFS4 (rs432020)	1	CT 26.1%					
NDUFS4 (rs381575)	1	AC 45.5%					
NDUFS4 (rs11743262)	1	TG 26.9%					
NDUFS4 (rs2124948)	1	CT 49.3%					
NDUFS4 (rs2636993)	1	GA 40.6%					
NDUFS4 (rs365578)	1	GT 40.7%					
NDUFS4 (rs42565)	1	AG 26.2%					
NDUFS4 (rs31304)	2	CC 93.1%					
NDUFS4 (rs31303)	2	GG 59.0%					
NDUFS4 (rs31302)	2	TT 41.1%					
NDUFS4 (rs12517465)	1	GA 49.1%					
NDUFS4 (rs10513019)	1	TC 27.7%					
NDUFS4 (rs1388111)		TT 47.5%					
NDUFS4 (rs372215)	1	GA 26.1%					
NDUFS4 (rs4147736)	1	GA 49.3%					
NDUFS4 (rs2607508)	1	TC 26.4%					
NDUFS4 (rs256116)	2	TT 58.9%					
NDUFS4 (rs4147737)		AA 78.9%					
NDUFS4 (rs12515547)		GG 64.4%					
NDUFS4 (rs12522533)		GG 64.4%					
NDUFS4 (rs4147739)	1	GA 27.6%					
NDUFS4 (rs31308)	1	AG 26.1%					
NDUFS4 (rs256094)		GG 51.9%					
NDUFS4 (rs4147740)		TT 68.0%					
NDUFS4 (rs4147742)	1	GA 27.5%					
NDUFS4 (rs445347)	1	AG 26.1%					
NDUFS4 (rs2607506)		TT 71.3%					

NDUFS7	50%							
NDUFS1	100%							
NDUFS2	50%							
NDUFS3	100%							
NDUFS4	54%							
NDUFS5	25%							
NDUFS6	56%							
NDUFS8	63%							
NDUFS Total	61%							
NDUFS8 (rs2075626)	1	TC 36.0%						
OGDH				Product Name	SNP Total	Lab Total	Symptoms	
				Pro Alpha Ketoglutarate Plus	0	#N/A	#N/A	
OGDH (rs142839706)		GG 96.7%	OGI	OGDH or Oxoglutarate (Alpha-Ketoglutarate) Dehydrogenase (Lipoamide) enco				
OGDH (rs17133537)		TT 30.9%	the alph	2-oxoglutarate dehydrogenase comple ha-ketoglutarate to succinvl-CoA and C	ex. This complex cata O2.	lyzes the overa	all conversion of	
OGDH (rs740094)		GG 31.4%						
OGDH (rs2268308)		CC 92.2%	Stu hvn	dies have shown that variants in OGDH perlactatemia	I lead to hypotonia, n	netabolic acido	osis, and	
OGDH (rs757702)		GG 92.2%	,P					
OGDH (rs10951768)	1	GT 14.9%						
OGDH (rs799434)	2	CC 81.2%						
OGDH (rs12155014)	1	TC 14.8%						
OGDH (rs10247064)		CC 84.6%						
OGDH (rs710887)	2	CC 48.0%						
OGDH (rs3735474)	1	AG 15.0%						
OGDH (rs3801401)		CC 94.2%						
OGDH (rs7805156)		CC 92.9%						
OGDH (Alpha-Ketoglutarate to Succinyl-CoA and CO2)	73%							

Detoxification Capacity - SOD, Glutathione (Phase 2 Liver Detox) and CYP (Phase 1 Liver Detox)

SOD (Superoxide Dismutase), Glutathione, CYP (cytochrome P-450) and PON1 represent the body's ability to neutralize free radicals and to detox properly. The more variants here, the less ability to deal with free radicals, which may increase inflammation, aid in the eventual breaking down of the body, and lower the ability to clear toxins. After supporting the gut and ATP production, supporting the neutralizing of free radicals and detoxifying may be the next most important part of the body to support.

Superoxide Dismutase turns the free radical Superoxide into H2O2, which is then turned into water and oxygen by glutathione and catalase. If SOD does not neutralize the free radical, it combines with nitric oxide and creates the very strong oxidizing agent peroxynitrite.

If there is low glutathione, and folate is given, the folate can stimulate Phase 1 detox but overwhelm Phase 2. This can cause inflammation. This is why many people have negative reactions to folate, even when they have MTHFR and folate deficiency. Always make sure you have adequately supported Phase 2 Liver Detox before proceeding with folate.

Variants in PON1 will reduce the ability to clear herbicides and pesticides, further straining glutathione levels.

Gene Name	Variants	Metrics]								
Detox Ability - SOD				Product Name	SNP Total	Lab Total	Symptoms				
			1	Pro SOD/Catalase Support	7.83	#N/A	#N/A				
				Nutrition & Anti-Oxidant Accelerator	8.33	#N/A	#N/A				
SOD2 (rs2758331)	2	AA 22.9%	The	The free radical Super Oxide, may be created 5% of the time when the cells create ATP, and is							
SOD2 A16V (rs4880)	2	GG 24.4%	ma	de in large quantities with NOS uncoupling, a	and thus making	g the very dang ior causes of p	gerous oxidizing remature aging				
SOD3 (rs2855262)	1	TC 45.7%	dise	ease, controlling the superoxide free radical	is critical. Super	oxide Dismuta	ise turns the				
			SOI SOI wh	reported referance into h202, so gutation gen. The SOD2 genes make superoxide dism D outside the cells. Nutrition & Anti-Oxidant ile Pro SOD/Catalase contains the actual enzy ct.	utase (SOD) ins Accelerator sup ymes in a capsu	ide the cells, w ports the proc le that only op	while SOD3 mak duction of SOD, bens in the intes				
SOD Production	17%		Wit disi lea: per	th 5 SOD variants, Nutrition & Anti-Oxidant A mutase protection. Consequently, use 3 Nutr st 2-3 Pro SOD/Catalase. This can be increase oxynitrite. Pro SOD will be a permanent supp	ccelerator will l ition & Anti-Ox ed to 4 if there a plement for this	likely not be er idant Accelera are other facto 5 individual. Nr	nough superoxid tor capsules and rs that increase f2 Accelerator				
			wo	uld also likely be needed.	CND Total	1.1. 7.1.1	C				
Detox Ability - Glutathione			-	Clutathions Assolates	4.63		symptoms #N/A				
				Giutatnione Accelerator	4.05	#N/A	#N/A				
				S Acetyl Glutathione	4.63	#N/Δ	#N/A #N/Δ				
				Perovynitrite Scavenger P M	4.5	#N/Δ	#N/Δ				
				GSH Assist	4.63	#N/A	#N/A				
				Nrf2 Accelerator	4.5	#N/A	#N/A				
				SHMT Assist	0	, #N/A	, #N/A				
GSTM1 (rs1056806)		CC 87.9%	Glu	tathione is a critical antioxidant that is very i	mportant in Ph	ase II Liver Det	tox. Studies hav				
GSTP1 A114V (rs1138272)		CC 84.3%	sho	wn those with the highest glutathione live the	ne longest. If th	ere is insufficie	ent glutathione,				
GSTP1 I105V (rs1695)	1	AG 44.4%	- will ofte	age prematurely, and be prone to lowered a en report an inability to tolerate strong smel	ability to detox. Is and are verv i	Individuals wi prone to inflan	th low glutathic nmatory conditi				
SHMT2 (rs34095989)		GG 38.1%	esp	ecially when this is combined with other var	iants that cause	inflammation					
CTH (rs1021737)	1	GT 40.8%	Glu	tathione Accelerator has NAC and enzyme si	upport, while G	SH Assist has g	lycine when thi				
			nee Alw	eded, or NAC is contraindicated. Nrf2 Acceler vays make sure you have supported Glutathio	ator supports t one before givir	he production ng folate.	of Glutathione.				
Glutathione Enzymes	83%		Wit unl	th 1 glutathione enzyme variant, there may be ess there is a lot of peroxynitrite production,	e a slight need or the SHMT o	for Glutathion r CTH variants	e Accelerator, are present.				
			1								
Glycine / SHMT	100%		The use	ere are no variants in the SHMT gene, so ther it up in excess.	e may be adequ	uate glycine, u	nless other vari				

Patient: First/Last Name								
Catalase				Product Name	SNP Total	Lab Total	Symptoms	
				Pro SOD/Catalase Support	7.83	#N/A	#N/A	
CAT (rs1049982)	2	CC 43.1%	The	• CAT gene provides instructions for maki	d catalase. Cat	talase is a key		
CAT (rs11032703)		CC 84.0%	 antioxidant enzyme in the body's defense against oxidative stress. Oxidative stress is w is an imbalance between the production of free radicals and the body's defense against radicals harmful effects. 					
CAT (rs2300181)	1	CT 38.1%						
CAT (rs480575)		AA 49.1%	 Studies have hypothesized that oxidative stress plays a role in the development or late-onset conditions such as diabetes, asthma, Alzheimer's disease, and rheur 					
CAT (rs494024)	2	CC 39.0%						nic ritis.
CAT (rs484214)		AA 49.5%						
CAT (rs17881734)		GG 97.3%	Cat	alase will convert the reactive oxygen spe	ecies hydrogen per	oxide to water	and oxygen.	
CAT (rs2284369)		AA 58.5%	2 н	202 → 2 H2O + O				
CAT (rs1408036)		AA 80.7%	Thi	s alleviates the toxic effects of hydrogen	peroxide.			
CAT (rs769218)		GG 58.4%	1.	, , , , , , , , , , , , , , , , , , , ,	·			
CAT (rs17881288)		AA 97.3%	Var	iants in this gene have been associated w	vith decreases in ca	talase activity.		
CAT (rs7933285)	1	CT 38.0%						
CAT (rs2073058)	1	AG 38.1%						
CAT (rs12273124)	1	AG 10.0%						
CAT (rs769217)		CC 58.5%						
CAT (rs17881586)		GG 96.6%						
CAT (rs511895)	2	CC 38.9%						
CAT (rs10488736)	2	TT 9.4%						
CAT	67%							
Detox Ability - CYP		•		Product Name	SNP Total	Lab Total	Symptoms	
				Nrf2 Accelerator	4.5	#N/A	#N/A	
				Detox Liquescense	5	#N/A	#N/A	
CYP1A1 (rs4986883)		TT 99.8%	Insi	de the liver cells there are sophisticated	mechanisms that b	reak down tox	ic substances. E	very
CYP1A1*2C A4889G (rs1048943)		TT 91.1%	dru live	g, artificial chemical, pesticide, and horm r cells	one is broken dow	n by enzyme p	athways inside	the
CYP1A1*4 C2453A (rs1799814)		GG 91.4%] ""					
CYP1A2 C164A (rs762551)	2	AA 50.0%	Ma in f	ny of the toxic chemicals that enter the b	ody are fat-soluble	, which means	they dissolve o	nly ho
CYP1B1 L432V (rs1056836)		CC 19.3%	bod	dy's primary defense against metabolic po	pisoning is carried o	out by the liver	The liver has t	wo
CYP1B1 R48G (rs10012)		GG 15.9%	me	chanisms designed to convert fat-soluble	chemicals into wa	ter soluble che	micals so that the	hey
CYP1B1 N453S (rs1800440)		TT 67.9%		y then be easily excreted from the body v	na watery hulus su	LII do Dile dilu i	Jine.	
CYP2A6*2 A1799T (rs1801272)		AA 95.2%	The	ere are two detoxification pathways inside	e the liver cells, wh	ich are called t	he Phase 1 and	4
CYP2C19 (rs12248560)		CC 62.5%	hyc	Irolysis. Phase one detoxification is cataly	zed by enzymes re	ferred to as th	e cytochrome P	л 450
CYP2C9*3 A1075C (rs1057910)		AA 87.9%	enz	tyme. These enzymes reside on the memb	orane system of the	e liver cells (cal	lled Hepatocyte	s).
CYP2C9*2 A C430T (rs1799853)		CC 77.0%	ind	uced upon exposure to specific chemicals	5. This provides a m	echanism of p	rotection from a	п be a
CYP2D6 T100C (rs1065852)	1	GA 34.9%	wid	le variety of toxic chemicals.				
CYP2D6 (rs1135840)		GG 32.7%	Thi	s pathway converts a toxic chemical into a	a more harmful che	emical. This is a	achieved by vari	ious
CYP2D6 T2850C (rs16947)	1	GA 53.1%	che	mical reactions (such as oxidation, reduc	tion and hydrolysis), and during t	his process free	
CYP2E1*1B A10023G (rs55897648)		GG 99.6%	vita	icals are produced which, if excessive, cal min C and E and natural carotenoids) red	n damage the liver luce the damage ca	cells. Antioxid	ants (such as free radicals. If	
CYP2E1*1B G9896C (rs2070676)	2	CC 75.5%	ant	ioxidants are lacking and toxin exposure i	is high, toxic chemi	cals become fa	ar more dangero	ous.
CYP2E1*4 A4768G (rs6413419)		GG 94.2%	The	e more CYP variants, the more difficultv th	nere may be in dete	oxification of to	oxins and drugs	
CYP3A4*1B (rs2740574)	2	TT 91.2%		,	,			
CYP3A4*3 M445T (rs4986910)		AA 98.5%	sup	may develop a supplement to support C port Nrf2 and glutathione.	re, but in the mear	itime if there a	are many varian	τs,
			1					
CYP - Phase 1 Liver Detox	81%							

ABP1									
ABP1 (rs10156191)	1	CT 38.1%	Non-steroidal anti-inflammatory drugs (NSAIDs) are the drugs most frequently inv			y involved in			
			hyp res Stu NS/	ersensitivity drug reactions. Histamine is re consible for some of the clinical symptoms dies have shown that individuals with varia AIDS.	eleased in the alle nts in SNP rs101	ergic response 56191 have a h	to NSAIDs and is hypersensitivity to	s to	
NSAID Sensitivity	50%		Wit	h 1 variant this individual may be hyperser	sitive to NSAIDS.				
PON1 - Peroxynase		-		Product Name	SNP Total	Lab Total	Symptoms		
				PON1 Assist	0	#N/A	#N/A		
				Addex	0	#N/A	#N/A		
PON1 Q192R (rs662)		TT 48.1%	Pes	ticide use has been increasing over the yea	rs, and has beco	me quite contr	oversial.		
PON1 (rs854555)	2	CC 40.4%]	body needs the ability to detay from them	and the PON1 (Perovunase) ge	ane along with		
PON1 (rs3917550)		GG 76.4%	Glu	Glutathione, plays an important role in helping the body clear them.					
PON1 (rs3917548)		AA 88.4%	 PON1 (Paraoxonase) plays a large role in removing pesticides. It is also involved with supporting HDL function, crucial for healthy circulation. 					ina	
PON1 (rs3917542)		CC 60.4%						ing	
PON1 (rs2074354)		GG 79.6%	The most important gape so far is the first and listed, the PON1 0102P, however, the rest						
PON1 (rs854561)	2	TT 12.9%	pla	an important gene so far is the first one an important role as well.	e listed, the PONI	Q192K, NOWE	ever, the rest may	y	
PON1 (rs3917498)		GG 42.8%			DON1 Assist for				
PON1 (rs2272365)		AA 71.9%		isider using Addex Homeopathic Spray and	PON1 Assist for	those with this	s genetic variant.	•	
PON1 (rs2049649)		AA 45.3%							
PON1 (rs2299260)		TT 67.0%							
PON1 (rs2299262)		CC 38.4%							
PON1 (rs854569)	2	GG 58.7%							
PON1 (rs2237584)		CC 86.2%							
PON1 (rs3917478)		TT 79.3%							
PON1 (rs854566)	2	GG 66.5%							
PON1 (Single Most Relevant)	100%		Altl is u	nough there are no PON1 rs662 variants, if nknown how the other PON1 variants may	there are many o impact detoxifica	others, support ation.	t may be needed	i. It	
PON1 (All Genes)	81%								

Patient:	First/Last	Name
----------	------------	------

NAT Genes				Product Name	SNP Total	Lab Total	Symptoms
				Nrf2 Accelerator	4.5	#N/A	#N/A
NAT1 (rs4986782)		GG 96.2%	The	e NAT1 and NAT2 genes encode an en	zyme that catalyzes th	e transfer of a	n acetyl group from
NAT1 (rs7017402)	1	AG 21.6%	ace	etyl-CoA to various arylamine and hydr	razine substrates. This	enzyme helps	in the
NAT1 (rs11203943)		GG 81.3%		capolization of drugs.			
NAT1 (rs4921581)		AA 11.6%	Var	riations in these genes are associated	with higher incidences	of drug toxicit	Σ γ
NAT1 (rs13253389)		AA 12.8%	1				
NAT1 (rs17693103)		GG 71.5%	1				
NAT1 (rs9325827)		TT 71.4%]				
NAT1 (rs6586714)	2	GG 75.6%					
NAT1 (rs17126350)		AA 86.5%					
NAT1 (rs8190837)		AA 83.0%]				
NAT1 (rs8190844)		CC 97.7%					
NAT1 (rs8190845)		GG 72.5%					
NAT1 (rs8190847)		GG 94.3%					
NAT1 (rs4987076)		GG 94.3%					
NAT1 (rs4986990)		GG 94.4%					
NAT1 (rs4986783)		TT 94.3%					
NAT1 (rs56172717)		AA 99.5%					
NAT1 (rs15561)	2	CC 51.8%					
NAT1 (rs4986993)	2	GG 51.9%					
NAT2 (rs11780272)	1	TC 47.5%					
NAT2 (rs2087852)		AA 50.8%					
NAT2 (rs1390358)	1	TC 46.8%					
NAT2 (rs2410556)		TT 76.0%					
NAT2 (rs1961456)	1	AG 41.5%					
NAT2 (rs973874)	2	CC 98.7%					
NAT2 (rs7832071)	1	CT 47.6%					
NAT2 (rs56011192)		CC 99.2%					
NAT2 (rs2552)		TT 91.3%					
NAT2 C282T (rs1041983)		CC 45.3%					
NAT2 C481T (rs1799929)	1	CT 47.5%					
NAT2 G286E (rs1799931)		GG 94.0%					
NAT2 I114T (rs1801280)	1	TC 64.3%					
NAT2 K268R (rs1208)	1	GA 47.6%					
NAT2 R197Q (rs1799930)		GG 50.1%					
NAT2 R64Q (rs1801279)		GG 99.6%					
NAT1	82%						
NAT2	72%						

Folate Creation & Pathways

For the methylation cycle to work, there needs to be adequate amounts of folate. Variants along the pathway will reduce the folate in the body. In addition to many other roles in the body, folate is needed to work with B12 to convert homocysteine into methionine, so more SAMe can be made.

Before supporting folate, always make sure there is adequate B12, that the transsulfuration pathway is not going too fast and thus creating glutamate, and glutathione levels are adequate. If there is not enough B12, you can get folate trapping. If CBS is variated, you can create anxiety by making more glutamate, and if phase II (glutathione) is not adequate, the folate can stimulate Phase I and cause inflammation. It is usually best to add folate LAST, after inflammation, CBS, and B12

is properly addressed.

FOLR -> DHFR -> DHF (dihydrofolic acid) -> DHFR -> THF (tetrahydrofolic acid) -> MTHFD1 -> 10-FORMYL THF -> MTHFD1 -> 5-10 Methenyl THF (a form of tetrahydrofolate) MTHFD1 -> 5-10 Methenyl THF (a form of tetrahydrofolate) -> MTHFD1 -> 5-10 Methenylene THF (the substrate used by the enzyme methylenetetrahydrofolate reductase to generate 5-methyltetrahydrofolate) - MTHFR -> 5 -MTHF

Gene Name	Variants	Metrics								
Folate Receptor Sites				Product Name	SNP Total	Lab Total	Symptoms			
				Detox Accelerator	1.67	#N/A	#N/A			
				Methylation Assist Liquescense	2.11	#N/A	#N/A			
FOLR1 (adult) (rs2071010)		GG 88.5%	Fola	ate plays many critical roles in the body, an	d the first step o	f folates is the	folate receptor	sites		
FOLR2 (fetal) (rs651933)	1	GA 48.9%	Variants in the folate receptor sites will likely reduce the amount of folate absorbed for u and increase the need for supplementation. Methylation Assist Liquescence may support absorption of Folate.							
FOLR3 (gamma) (rs7925545)		AA 90.7%								
Folate Assimilation	83%		Wit	h 1 variant, folate supplementation may be	e appropriate.					
DHFR				Product Name	SNP Total	Lab Total	Symptoms			
				BH4 Assist	3.67	#N/A	#N/A			
				Pro NADH	1.5	#N/A	#N/A			
DHFR (rs1643649)		TT 54.6%	The	The DHFR gene is a protein coding gene. DHFR converts dihydrofolate into tetrahydrofolate.						
DHFR (rs1650697)	1	AG 37.7%	DH	DHFR has a key role in cell growth.						
DHFR (rs865646)		GG 47.4%	Var	Variants here will indicate the need for methyl folate and PRO NADH. BH4 Support and						
DHFR A20965G (rs1643659)		TT 54.6%	Glutathione Support may also be needed.							
DHFR C19483A (rs1677693)		GG 54.6%	1							
DHFR	90%		Wit this QD	h one DHFR variant, folate production may can impact folate production. Since DHFR PR. This would compound the BH4 recycling	be impaired. FO also supports BH g.	LR and MTHFR 2 to BH4 conv	ersion, also che	with ck		
MTHFR				Product Name	SNP Total	Lab Total	Symptoms			
				BH4 Assist	3.67	#N/A	#N/A			
				Pro Bioactive Folate	1.67	#N/A	#N/A			
				MTHFR/BHMT Assist	3.63	#N/A	#N/A			
				MTHFR/MTR/MTRR/BHMT Assist	0	#N/A	#N/A			
MTHFD1 C105T (rs1076991)	1	TC 48.6%	It is	currently theorized that the C677T impact	s the methionine	cycle more sig	gnificantly while	e the		
SHMT2 (rs34095989)		GG 38.1%	A12	298 impacts the BH4 cycle. If this theory is c educing Homocysteine while A1298C may r	correct, those with need more suppo	th C677 would ort with creatir	need more sup	port		
MTHFS (rs6495446)		CC 54.5%	pre	venting NOS uncoupling. Nonetheless, ther	e is usually a nee	ed for folate wi	ith these varian	ts.		
MTHFR A1298C (rs1801131)		TT 47.7%	Hov me	wever, to be sure, checking the urine organ asure when adequate levels are reached wi	ic acids can confi hen supplementi	irm, and can al ng.	so be used as a			
MTHFR C677T (rs1801133)	1	GA 45.0%			nen supplementi					
MTHFR Production (C677T & A1298C)	75%		With 1 heterozygous MTHFR variant, there is a possible need for folate, methylation, and circulation support. Folate production may be about 70%. However, doing the Genova U Organic Acid test will verify if there is a need for folate. In some instances, they are come				ylation, and po e Genova Urine ey are compens	ssibly		
	_] ок.	-		·	·	0		
Overall Folate Production	83%		Wit	h 3 folate production variants, folate suppl	ementation may	be very impor	tant.			

Methionine Cycle

The Methionine Cycle takes the amino acid methionine, uses the MAT gene to make SAMe. SAMe is the methyl donor that gives a methyl group where it is needed for well over 100 functions. The GAMT gene takes SAMe to make creatine.

After donating a methyl group and making creatine, SAMe turns into SAH and then the AHCY gene turns it into homocysteine.

Variants in MTRR, MTR, BHMT, PEMT will slow the conversion of homocystine into methionine.

Gene Name	Variants	Metrics						
MTR (upregulation)	<u>.</u>			Product Name	SNP Total	Lab Total	Symptoms	
				Pro Hydroxocobalamin	6.25	#N/A	#N/A	
				Methylation Assist	12.5	#N/A	#N/A	
MTR A2756G (rs1805087)		AA 65.8%	мт	R combines folate, Methyl B12 and Homocysteine into Methionine. Variants in MTR are				
			upr slov	egulations, so it tries to go faster. MTRR att v the process. When both MTR and MTRR e	aches a methyl xist, dysfunctior	group to B12, a 1 can occur.	and variants here w	
MTR	100%		Wit Me	h no MTR variants, the gene is acting norma thionine using methyl B12 and methylfolate	ally, in trying to e. Variants in B12	convert Homo 2 or folate will	cysteine into impede the proces	
MTRR				Product Name	SNP Total	Lab Total	Symptoms	
				Pro Hydroxocobalamin	6.25	#N/A	#N/A	
				Methylation Assist	12.5	#N/A	#N/A	
		·		Methylation Assist Liquescense	2.11	#N/A	#N/A	
MTRR A66G (b12) (rs1801394)		AA 23.0%	ТНЕ	MTRR enzyme places a methyl group on B?	12 so it can be u	sed by MTR to	convert	
MTRR	100%		oth (wh Me oth The and me	er variants that impact the absorption and t ich is trying to make it go faster), this functi thyl B12 is needed (Methylation Assist), unle er variants such as GAMT and COMT. re are no variants in MTRR, but B12 levels o there may be a need for B12 if the MTR is o asure cellular B12.	consport of B12 ion may be impa ess the individua could still be low upregulated. Ge	, and if the MT iired. Supplem al has excess m if there are ot nova Urine Org	R variant exists entation with lethyl groups due t her B12 variants, ganic Acids can	
All B12 Factors				Product Name	SNP Total	Lab Total	Symptoms	
				Pro Hydroxocobalamin	6.25	#N/A	#N/A	
				Methylation Assist	12.5	#N/A	#N/A	
MTR A2756G (rs1805087)		AA 65.8%	Var	iants in the FUT genes may decrease probio	tics, and hence	decrease the a	bsorption of B12.	
MTRR A66G (b12) (rs1801394)		AA 23.0%	The	MTR variant is an upregulation, creating a	higher demand i	for B12, while t	the MTRR variants	
FUT2 (rs492602)	2	GG 22.1%	lieu		z, thus reducing	availability of	methyl B12.	
FUT2 (rs601338)	2	AA 21.5%	GIF	(gastric intrinsic factor) reduces the absorp	tion of B12, whi	le TCN1 and TC	N2 limit the	
FUT2 (rs602662)	2	AA 24.4%	the	functions dependent upon B12.				
GIF (TCN3) (rs558660)	1	AG 28.7%	FUT	variants may create a need for immune su	pport as well.			
TCN1 (rs526934)	2	AA 52.8%						
TCN2 C766G (rs1801198)	1	GC 49.9%						
B12 Production / Need / Utilization	38%		Wit bot	h ten variants of the SNPs related to B12, su h the MTR and MTRR have variants.	upplementation	is most likely r	ieeded, especially i	
Choline Usage				Product Name	SNP Total	Lab Total	Symptoms	
				Glutamate Scavenger/Calming Formula	a 0	#N/A	#N/A	
				CBS / BHMT Assist	3.19	#N/A	#N/A	
				A-L-O Formula	0	#N/A	#N/A	
PEMT (rs4244593)		TT 17.0%	Var	iants in PEMT can impede choline productio	on. Choline is ne	eded by the liv	er and brain. PEMT	
PEMT (rs4646406)		TT 25.7%	The	CBS variants, especially the CBS C699T, will	l cause homocys	teine to rush o	lownstream too	
PEMT (rs7946)	1	CT 40.9%	qui	ckly, potentially causing high glutamate and	ammonia.			
Choline Production	83%		Wit if th	h just one variant in PEMT, choline supplem ere are numerous BHMT variants.	nentation may n	ot be needed,	but may be needed	
PNPLA3				Product Name	SNP Total	Lab Total	Symptoms	
				Fatty Acid Assist	1.57	#N/A	#N/A	
				Nrf2 Accelerator	4.5	#N/A	#N/A	
PNPLA3 (rs738409)		CC 58.3%	Var	iants in this gene may cause a predispositio	n for fatty liver.			
PNPLA3	100%							

ВНМТ	,								
BHMT (rs6875201)	1	AG 18.1%	Vari	ants in the BHMT gene will slow the c	conversion of homocy	steine into me	thionine. Be aware		
BHMT R239Q (rs3733890)		GG 48.8%	of B	HMT-08 as this may push the homocy	steine down faster th	rough the tran	ssulfuration		
BHMT-02 (rs567754)	2	TT 11.1%	and adrenal fatigue.				stress, fiigh cortisor		
BHMT-08 (rs651852)		CC 27.3%]						
ВНМТ	63%		With three variants in BHMT support may be needed, especially if there are variants i This variant will push the homocysteine down through transsulfuration, potentially ca ammonia, glutamate and anxiety. Also, look at this variant in conjunction with PEMT,				ariants in BHMT-08. ntially causing high n PEMT, which		
				makes the choline needed to be used by the BHMT enzyme to turn homocysteine into methionine.					
AHCY									
AHCY-01 (rs819147)		TT 54.4%	АНС	Y variants slow the conversion of SAF	I into homocysteine v	vith no predicta	able results. It may		
AHCY-19 (rs819171)		TT 54.6%	low	er homocysteine and consequently gl	utathione, but not alv	vays. The Docto	or's Data serum		
			amino acids with methionine might be contraindicated and N-Ac Accelerator may be helpful if cysteine blood levels are low.		Acetylcysteine	in Glutathione			
АНСҮ	100%		Wit hon	n no AHCY variants, it would be likely nocysteine.	that S-adenosylhomo	cysteine would	l convert properly to		
GAMT (Creatine)				Product Name	SNP Total	Lab Total	Symptoms		
	•		1	GAMT Assist	0	#N/A	#N/A		
GAMT (rs17851582)		GG 82.7%	GAN	GAMT is the gene that converts SAMe and other cofactors into creatine, needed for muscle					
GAMT (rs55776826)		CC 74.0%	stre	ngth. Variants here could lead to mus sule that only opens in the intestinal t	cle weakness. GAMT	reakness. GAMT Assist contains Creatine in a for better absorption. However, use this with			
GAMT (rs80338734)		CC 98.8%	cau	ion in kidney disease and hypertension	on.				
GAMT (Creatine)	100%		No	GAMT variants present.					
MAT Gene	·								
MAT1 (rs11595587)		GG 93.3%] The	MAT Gene turns methionine into SAN	Me. Variants here may	decrease the	production of SAMe		
MAT1 (rs12242871)	1	GA 48.5%	and issu	create high methionine. This can cau es If there are a lot of variants, consid	se some serious healt der doing the Doctor's	h problems, in Data Methyla	cluding neurological tion Plasma test		
MAT1 (rs1819684)		GG 83.1%	This	is especially true when there are AH	CY and GAMT variants	as well. If ther	e is high		
MAT1 (rs1985908)		AA 46.3%	met	hionine, supporting BHMT may be co in methionine may be beloful	ntraindicated. Glycine	e (GSH Assist) a	and reducing foods		
MAT1 (rs2993763)	1	GA 50.0%		in methorime may be helpful.					
MAT1 (rs4934028)	1	GA 49.5%							
MAT1 (rs7081756)	2	TT 41.8%							
MAT1 (rs756208)	1	AG 42.0%							
MAT	63%		The sho war	re are six variants in the MAT gene, so uld be produced adequately, but ther t to do the Doctors Data Blood Plasm provide the Chrone curporting ATP o	o as long as there is ac e may be some issues a test to measure Me	lequate methic . To find out fo thionine, SAM	onine and ATP, SAM r sure, you may e, SAH, and on of SAMo		
				iocysteme. Grycine, supporting ATP p	souction may suppo		UN UN DAIVIE.		

Transsulfuration Pathway

The transsulfuration pathway takes homocosysteine, and pulls it down into glutathione, ammonia, cortisol, sulfites and sulfates.

If there are variants that cause less than optimal conversion of homocysteine back into methionine, and then if there are variants in the CBS genes, especially the CBS699, then homocystine can travel too fast down the transsulfuration pathway and create glutamate, which can cause stress and anxiety. Variants in the GAD genes can worsen the problem.

CBS variants can also create excess ammonia, that can be worse if the urea cycle is less than optimal. The excess ammonia can cause mental stress, sleeping problems, and deplete the much needed BH4, needed for neurotransmitter production.

The excess glutamate can also raise cortisol levels, and eventually lead to adrenal fatigue.

To support this function, you need to support both pathways that convert homocysteine into methionine. One can use Calming Formula/Glutamate Scavenger, reducing the glutamate.

Check sulfites and sulfates to see if SUOX is overwhelmed.

Gene Name	Variants	Metrics]						
Transsulfuration	·			Product Name	SNP Total	Lab Total	Symptoms		
				Glutamate Scavenger/Calming Formula	0	#N/A	#N/A		
				CBS / BHMT Assist	3.19	#N/A	#N/A		
				Ammonia Scavenger	5.62	#N/A	#N/A		
CBS A13637G (rs2851391)	1	TC 47.1%	The	e CBS gene is similar to a brake, governor, or a dam in the river. It allows homocysteine to					
CBS C19150T (rs4920037)		GG 61.5%	it is	ve down the transsulfuration pathway at an a believed that some variants in CBS, and espe	appropriate participation of the contract of t	ce. Although si 699. cause the	ill being researche homocysteine to		
CBS C699T (rs234706)		GG 45.5%	mo	ove down too quickly, potentially to stress SUOX, and to create excess glutamate that could					
CBSA360A (rs1801181)	1	GA 45.3%	crea	create anxiety, ammonia and adrenal stress. Checking the urine sulfite and sulfate					
CTH (rs1021737)	1	GT 40.8%		s to what is occurring.					
CBS	75%		With two variants in the CBS gene, it is likely that homocysteine is coming down the Transsulfuration Pathway at an appropriate pace, unless it is the CBS 699T. This variant may substantially speed up this pathway, causing excess ammonia, sulfites, sulfates, glutamate				wn the his variant may		
				nulating the adrenals with excess cortisol. Ot version of homocysteine into methionine is i MTHFR, CBS may be overwhelmed.	ner contributin mpaired by var	g factors could riants in PEMT,	l be that if the BHMT, MTR, MTR		
Ammonia & Glutamate				Product Name	SNP Total	Lab Total	Symptoms		
Production Estimates			-	Glutamate Scavenger/Calming Formula	0	#N/A	#N/A		
				CBS / BHMT Assist	3.19	#N/A	#N/A		
	1	1		Ammonia Scavenger	5.62	#N/A	#N/A		
BHMT-08 (rs651852)		CC 27.3%	Esti	mated production of ammonia and glutamat	e in this calcula	ation is based o	on variants in BHM		
CBS C699T (rs234706)		GG 45.5%	sulf	ates can give some clues (higher levels would	l go along with	higher glutam	ate and ammonia		
			levels). The Genova urine organic acids test can give estimates of ammonia and blooc measure ammonia as well. Excitability, anxiety and high cortisol levels would go along glutamate. Checking cortisol levels may be helpful in the assessment.			nd blood tests can go along with high			
Potential Ammonia & Glutamate Clearing Ability	100%		Wit fror can	h no variants in CBS699 and BHMT-08, there n excessive Homocysteine being pulled dowr also be high from a weakened Urea Cycle an	is less chance f transsulfurati d digestive issu	for excess glut on pathway. H Jes. If they pre	amate and ammon lowever, ammonia sent with a lot of		
			ammonia symptoms, consider checking the Genova Urine Organic Acids.						

Neurotransmitters - Serotonion, Dopamine, Glutamate, GABA

Neurotransmitters impact many functions beside emotions. Serotonin and GABA are generally considered relaxing, while dopamine, norepinephrine and epinephrine are considered excitatory.

Variants in MAO may be sparing to serotonin, and may be helpful if there is low production due to low BH4. Variants in COMT can cause a myriad of issues, as the COMT enzyme uses methyl groups to break down dopamine, and is also involved in other detox functions. Variants in COMT has the potential to cause excess methyl groups in the body, thus negative reactions to methyl folate and methyl B12.

The GAD genes convert glutamate to GABA. If there is an overproduction of glutamate, as well as variants in GAD (especially homozygous), the patient/client may experience severe anxiety.

DAO variants may also create overexcitement in the brain, and may contribute to ammonia production as well.

BH4 is needed to create neurotransmitters. See the next page for BH4 production estimates, as low BH4 may impact neurotransmitter production.

Gene Name	Variants	Metrics						
Serotonin	<u>.</u>							
MAO A (R297R) (rs6323)	1	GT 50.2%	The	MAO enzyme breaks down serotonin. V	ariants will actually	preserve sero	tonin. This can be	
			helpful when there is low BH4, poor availability of amino acids that are the precursors to high peroxynitrite.					
			Not is oi mal	e: Males only have the potential for 1 M. ne for males. Females will print 0, 1 or 2. les.	AO SNP. Currently, This will be modifi	the software p ed soon, and o	prints a 2 when ther nly reflect 0 or 1 for	
MAO A	50%		There is one variant in MAO. This may impact the breakdown of serotonin.					
Dopamine		•						
COMT (MIR4761) (rs6269)	1	AG 46.8%		MT is involved in breaking down excitato	ry neurotransmitte	rs and detox re	eactions. Click on th	
COMT H62H (MIR4761) (rs4633)	1	CT 49.0%	enzyme rating for more information.					
COMT V158M (MIR4761) (rs4680)	1	GA 48.8%						
COMT-61 P199P (mood swings) (rs769224)		GG 95.7%						
СОМТ	63%							
Glutamate Production Factors				Product Name	SNP Total	Lab Total	Symptoms	
				Glutamate Scavenger/Calming Form	ula O	#N/A	#N/A	
BHMT-08 (rs651852)		CC 27.3%	If the theory is correct that BHMT-08 and CBS699T causes Homocysteine to be converted into					
CBS C699T (rs234706)		GG 45.5%	Glut	tamate, this estimate may give some clue	es if this needs sup	port. Checking	sulfite and sulfate	
			may sulf can Met	y help with the excess glutamate, SUOX A ate process, and Ammonia Scavenger ma not clear all the ammonia. CBS/BHMT As thionine.	Assist may be neede ay be needed if the ssist will support the	ed for supporti urea cycle is o e conversion o	ng the sulfite to verwhelmed and f Homocysteine into	
Potential Glutamate Reduction Ability	100%		The doe	re are no BHMT-08 or CBS699T variants. is not completely rule it out.	This lessens the ch	ance of excess	glutamate, but	
GABA (Glutamate to GABA)		-						
GAD1 (rs3749034)		GG 59.3%	The	GAD enzyme converts glutamate to GAE	3A. When someone	has high gluta	mate and a lot of	
GAD1 (rs2241165)	2	TT 54.2%	vari	ants in GAD, it creates conditions that m rease stress and conditions related to hig	ay have high glutar	nate and low (GABA that could	
GAD1 (rs769407)	2	CC 6.8%	vari	ants in GAD have more impact that man	y Heterozygous. SE	R-GAB Assist a	and GABA Assist ma	
GAD1 (rs2058725)		TT 56.8%	be ł	helpful if there is low GABA.				
GAD1 (rs3791851)	2	CC 6.8%						
GAD1 (rs3791850)		GG 57.9%						
GAD1 (rs12185692)		CC 35.7%						
GAD1 (rs3791878)	2	TT 9.7%						
GAD1 (rs10432420)		GG 49.7%						
GAD1 (rs3828275)		CC 32.3%						
GAD1 (rs701492)	2	TT 7.9%						
Glutamate to GABA Conversion	55%							

GLS (Glutamine to Glutamate Conversion)						
GLS (rs1517354)	2	TT 84.5%	GLS or Glutaminase encodes a protein that c	atalyzes the hydrol	vsis of glutami	ne to glutamate
GLS (rs1921915)	2	AA 87.0%	and ammonia.	, , ,	,	
GLS (rs3088307)	2	GG 18.4%				
GLS (rs3771311)		TT 77.7%				
GLS (rs3771316)		AA 81.8%				
GLS (rs6758866)	2	GG 33.5%	-			
GLS (rs62179862)		AA 95.3%				
GLS (Glutamine to Glutamate Conversion)	43%					
GLS2 (Glutamine to Glutamate Conversion)						
GLS2 (rs2638315)	2	CC 3.8%	GLS2 or Glutaminase 2 encodes a protein that	at catalvzes the hvd	Irolvsis of gluta	amine to
GLS2 (rs6581096)		GG 48.1%	stoichiometric amounts of glutamate and an	nmonia.	.,	
GLS2 (Glutamine to Glutamate Conversion)	50%					
GLUL (Glutamate to Glutamine Conversion)						
GLUL (rs12403634)	1	CT 29.1%	GLUL or Glutamate-ammonia Ligase encodes	s a protein that cata	alyzes the synt	hesis of glutamine
GLUL (rs12735664)	1	AC 17.3%	from glutamate and ammonia in an ATP-dependent reaction.			
GLUL (Glutamate to Glutamine Conversion)	50%					
Glutamate to Alpha-			Product Name	SNP Total	Lab Total	Symptoms
Ketoglutarate Conversion			Pro Alpha Ketoglutarate Plus	0	#N/A	#N/A
GLUD1 (rs9421574)	1	CT 16.6%	.6% GLUD1 or Glutamate Dehydrogenase 1 encodes glutamate dehydrogenas		/drogenase wh	nich catalyzes the
GLUD1 (rs1923939)	1	AG 34.2%	oxidative deamination of glutamate to alpha	-ketoglutarate and	ammonia. Thi	s enzyme has an
GLUD1 (rs9421580)	1	CT 33.2%				
GOT1 (rs12768505)		CC 88.8%	Glutamic-oxaloacetic transaminase is a pyrid	loxal phosphate-de drial forms, GOT1 a	pendent enzyr nd GOT2, resp	e which exists in
GOT1 (rs2234971)	1	CT 21.6%	a role in the conversion of glutamate to alph	ia-ketoglutarate.		
GOT1 (rs9971274)		CC 04 40/	 a role in the conversion of glutamate to alpha-ketoglutarate. Glutamic-Pyruvate Transaminase also plays a role in the conversion of glutamate to 			
COT1 (re0071275)		66 84.4%			sion of glutam	ate to alpha-
GOTT (1599/12/5)		GG 84.4% GG 84.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs11190083)		GG 84.4% GG 84.3% AA 84.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971275) GOT1 (rs11190083) GOT1 (rs4328160)		GG 84.3% GG 84.3% AA 84.3% TT 81.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935)	2	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842)	2	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838)	2 1 1	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944)	2 1 1 1	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739)	2 1 1 1 2	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0% AA 22.0%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion	2 1 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0% AA 22.0%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion DAO	2 1 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0% AA 22.0%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate.	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion DAO DAO (rs2070586)	2 1 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 43.0% AA 22.0% GA 28.1%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate. The name of this gene is D-amino-acid oxida	a role in the conver	sion of glutam	ate to alpha-
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion DAO DAO (rs2070586) DAO (rs3741775)	2 1 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0% AA 22.0% GA 28.1% AC 49.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate. The name of this gene is D-amino-acid oxida conditions observed with this variant are: Sc ALS (Type 18), Autism and Crohn's Disease.	a role in the conver se and DAO is the g hizophrenia, Bipola	sion of glutam ene's official s r Disorder, Prii	ate to alpha- ymbol. Health mary Hyperoxaluria,
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion DAO DAO (rs2070586) DAO (rs3741775) DAOA (rs2391191)	2 1 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 43.3% AC 48.0% AA 22.0% GA 28.1% AC 49.3% GG 38.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate. The name of this gene is D-amino-acid oxida conditions observed with this variant are: Sc ALS (Type 18) , Autism and Crohn's Disease.	a role in the conver se and DAO is the g hizophrenia, Bipola	sion of glutam gene's official s r Disorder, Prin	ate to alpha- ymbol. Health mary Hyperoxaluria,
GOT1 (rs971273) GOT1 (rs11190083) GOT1 (rs4328160) GOT1 (rs3793935) GOT2 (rs30842) GOT2 (rs30838) GOT2 (rs863944) GPT (rs1063739) Glutamate to Alpha- Ketoglutarate Conversion DAO DAO (rs2070586) DAO (rs2741775) DAOA (rs2391191)	2 1 1 2 63%	GG 84.4% GG 84.3% AA 84.3% TT 81.3% TT 69.5% AC 43.4% TC 43.3% AC 48.0% AA 22.0% GA 28.1% AC 49.3% GG 38.3%	Glutamic-Pyruvate Transaminase also plays a ketoglutarate. The name of this gene is D-amino-acid oxida conditions observed with this variant are: Sc ALS (Type 18) , Autism and Crohn's Disease. Studies have found that the A allele in rs239 conditions such as Schizophrenia, and Bipola	a role in the conver se and DAO is the g hizophrenia, Bipola 1191 is a possible g ır Disorder.	sion of glutam gene's official s r Disorder, Prij enetic feature	ate to alpha- ymbol. Health mary Hyperoxaluria, of certain health

Oxytocin Receptor			
OXTR (rs2139184)		CC 96.0%	OXTR or Oxytocin Receptor encodes a protein that belongs to the G-protein coupled receptor
OXTR (rs11706648)	2	CC 10.8%	family and acts as a receptor for oxytocin. Oxytocin receptors regulate a variety of different
OXTR (rs237888)		TT 87.8%	
OXTR (rs2268492)	1	CT 39.7%	Variants in this gene can lead to a higher sensitivity to stress, and conduct disorders.
OXTR (rs2268494)		TT 83.6%	
OXTR (rs35498753)		TT 78.1%	
OXTR (rs237893)	2	GG 19.4%	
OXTR (rs11711703)		AA 67.5%	
OXTR (rs237901)		GG 100.0%	
OXTR (rs237902)		GG 48.3%	
OXTR (rs189386)		CC 83.8%	
OXTR (rs237906)		CC 100.0%	
OXTR (rs237907)		CC 100.0%	
OXTR (rs237908)		CC 99.9%	
OXTR (rs237915)	2	CC 8.4%	
OXTR (rs35413809)		GG 81.9%	
OXTR (rs2301261)		CC 82.3%	
OXTR (rs9860869)		TT 78.5%	
OXTR (rs237897)	2	GG 27.4%	
OXTR (rs237887)	2	AA 33.4%	
OXTR (rs53576)	2	GG 46.3%	
OXTR (rs7632287)		GG 58.8%	
OXTR (rs2268491)		CC 75.9%	
OXTR (rs2254298)		GG 75.6%	
OXTR (rs1042778)	2	TT 14.8%	
OXTR (rs13316193)	1	TC 45.6%	
OXTR (rs4686302)		CC 77.8%	
OXTR	70%		
OXTR Empathy			
OXTR (rs53576)	2	GG 46.3%	For rs53576, studies have shown that individuals with the GG genotypes are more empathetic,
			can become more attached, feel less lonely, have a decreased level of sociality, employ more sensitive parenting techniques, and have lower rates of autism.
OXTR Empathy	100%		There are two variants in the OXTR rs53576. Variants in this gene have been shown to be associated with people who are more empathetic, feeling less lonely, employ more sensitive parenting techniques, and have lower rates of autism.
			1 · · · · ·

BH4 Cycle, Nitric Oxide & Peroxynitrite (Inflammation) Estimates

The NOS enzyme uses BH4 and L-Arginine to create Nitric Oxide, the critical molecule needed for vasodilation and many other factors. If there is inadequate BH4 or variants in NOS, the arginine may instead create the free radical superoxide. Superoxide then combines with nitric oxide to create the very strong oxidizing agent peroxynitrite. This is called NOS uncoupling. NOS uncoupling causes inflammation and may weaken the immune system.

The more factors that lessen BH4, (A1298C, DHFR, QDPR) and the more NOS variants, and the more SOD variants, the higher the likelihood of peroxynitrite production.

Urea cycle dysfunction will contribute to lowering BH4, because BH4 is needed to clear ammonia not removed by the Urea Cycle.

Gene Name	Variants	Metrics							
Nitric Oxide & NOS		•		Product Name	SNP Total	Lab Total	Symptoms		
				NOS Assist	7.5	#N/A	#N/A		
				Pro SOD/Catalase Support	7.83	#N/A	#N/A		
NOS2 (rs2297518)		GG 64.1%	The	NOS enzymes convert L-Arginine and BH4	into Nitric Oxide	. Variants in th	ne NOS enzymes an		
NOS2 (rs2274894)	2	GG 38.9%	 if along with low BH4 will result in the free radical Superoxide being created instead. If the not enough Superoxide Dismutase to neutralize the superoxide, the superoxide molecule combines with Nitric Oxide to create the very dangerous and damaging Peroxynitrite, in a 						
NOS2 (rs2248814)	2	GG 38.6%							
NOS3 (rs1800779)	2	AA 39.3%	call	ed NOS uncoupling.					
NOS3 (rs3918188)	1	CA 46.2%	NO:	S Assist supports the NOS Enzyme, while N	litric Oxide Accele	erator does as	well, but has L		
NOS3 D298E (rs1800783)	2	TT 37.7%	Arg	inine. L Arginine may be contraindicated w	vith NOS variants	and low BH4. I	NOS3 D298 may be		
NOS Production	25%		to c The Sca	letermine if there is excess inflammation. re are 12 NOS variants. NOS support is hig venger may be needed as well.	hly recommende	d. BH4 and Per	roxynitrite		
BH4 Production Factors			<u> </u>	Product Name	SNP Total	Lab Total	Symptoms		
				BH4 Assist	3.67	#N/A	#N/A		
				Pro NADH	1.5	#N/A	#N/A		
CBS C699T (rs234706)		GG 45.5%	BH4	I is critical for neurotransmitter production	n and making nitr	ic oxide. Low B	H4 can lead to		
BHMT-08 (rs651852)		CC 27.3%	imp	aired neurotransmitter production and No	OS uncoupling, th	us resulting in	the creation of the		
DHFR (rs1643649)		TT 54.6%	Ver	y dangerous, peroxymente. mese variants	inay lower the pr	ouuction of re	Cycling of BH4.		
SHMT2 (rs34095989)		GG 38.1%							
MTHFR A1298C (rs1801131)		TT 47.7%							
BH4	100%		Wit che	h no variants that support the production ck QDPR genes for recycling of BH2 to BH4	of BH4, productio I.	on may be ade	quate. However,		
BH2 to BH4 Conversion		•		Product Name	SNP Total	Lab Total	Symptoms		
				BH4 Assist	3.67	#N/A	#N/A		
				Pro NADH	1.5	#N/A	#N/A		
QDPR (rs1031326)	1	TC 46.1%	QD	PR produces the enzyme quinoid dihydrop	teridine reductas	e that recycles	BH2 to BH4.		
QDPR (rs11722315)		CC 67.1%	Var	iants here, along with other variants that i	mpact BH4 produ te oxidizing agent	iction, may cor	tribute to NOS		
QDPR (rs12645938)		GG 91.5%							
QDPR (rs3796809)	1	GA 37.9%							
QPDR	75%		Wit also nee	h two variants in QDPR, BH2 to BH4 conve o impacts BH2 to BH4 and MTHFR1298C su d to be taken into consideration.	ersion may be slig apports the folinic	htly compromi acid needed f	sed. However, DHFI or BH4. All of these		

Peroxynitrite Factors			
MTHFR A1298C (rs1801131)		TT 47.7%	The
SHMT2 (rs34095989)		GG 38.1%	crea
DHFR (rs1643649)		TT 54.6%	nutr
QDPR (rs1031326)	1	TC 46.1%	The
QDPR (rs11722315)		CC 67.1%	redu
QDPR (rs12645938)		GG 91.5%	redu
QDPR (rs3796809)	1	GA 37.9%	tnan
BHMT-08 (rs651852)		CC 27.3%	Revi
CBS C699T (rs234706)		GG 45.5%	redu
CTH (rs1021737)	1	GT 40.8%	
GSTM1 (rs1056806)		CC 87.9%	Anoi
GSTP1 A114V (rs1138272)		CC 84.3%	1
GSTP1 I105V (rs1695)	1	AG 44.4%]
SOD2 (rs2758331)	2	AA 22.9%	
SOD2 A16V (rs4880)	2	GG 24.4%	
SOD3 (rs1799895)		CC 97.7%]
SOD3 (rs2855262)	1	TC 45.7%	1
NOS2 (rs2274894)	2	GG 38.9%	1
NOS2 (rs2248814)	2	GG 38.6%	1
NOS3 (rs3918188)	1	CA 46.2%	1
NOS2 (rs2297518)		GG 64.1%	1
NOS3 (rs1800779)	2	AA 39.3%	
NOS3 D298E (rs1800783)	2	TT 37.7%	1
Peroxynitrite Reduction Efficiency	55%		

Product Name	SNP Total	Lab Total	Symptoms
NOS Assist	7.5	#N/A	#N/A
Glutathione Accelerator	4.63	#N/A	#N/A
Peroxynitrite Scavenger	4.5	#N/A	#N/A
S Acetyl Glutathione	4.63	#N/A	#N/A
Ammonia Scavenger	5.62	#N/A	#N/A
Peroxynitrite Scavenger P.M.	4.5	#N/A	#N/A
Pro SOD/Catalase Support	7.83	#N/A	#N/A
GSH Assist	4.63	#N/A	#N/A
Nrf2 Accelerator	4.5	#N/A	#N/A
Pro NADH	1.5	#N/A	#N/A

The Peroxynitrite Support Estimate is a summation of all the variants that could contribute to the creation of peroxynitrite. Reducing peroxynitrite may be the most important step you take nutritionally.

The variants listed here are related to those that reduce the creation of BH4 (MTHFR A1298C, SHMT), those that would slow the recycling of BH2 to BH4 (DHFR and QDPR), those that would reduce BH4 by creating excess ammonia (BHMT 08 and CB 699) and the variants that would reduce SOD and glutathione. Also, look at the NOS variants that would make superoxide rather than nitric oxide.

Reviewing this list may give you clues as to how severe peroxynitrite production is, and how suited they are to reduce it with glutathione and SOD and the most appropriate strategies to reduce the peroxynitrite.

Another component to consider, is to view the Urea Cycle function as well, as lowered urea function will cause more BH4 to be used for ammonia reduction.

Vitamin D, Cell Membrane, Intestinal Bacteria, SHBG & Cardiovascular, Iron

These SNPs may be reflective of need for Vitamin D, prebiotics, hormonal support and cardiovascular support.

Gene Name	Variants	Metrics						
Vitamin D Receptor				Product Name	SNP Total	Lab Total	Symptoms	
				Vitamin D3 5000	10	#N/A	#N/A	
VDR BSM (rs1544410)	2	TT 15.2%	Variants in the VDR (Vitamin D receptor) Taq may lower the Vitamin D in the				body and	
VDR Fok (blood sugar) (rs2228570)		AA 14.1%	supplementation is needed. More information will be coming on the VDR Fol and VDR B Vitamin D rating, is only calculated based upon the TAQ, and not the other Vitamin D get					
VDR Taq (methy group) (rs731236)	2	GG 14.9%	More information will be added here on the others in the future.					
Vitamin D Production (TAQ Only)	0%		There are 2 variants. Measure Vitamin D, and consider 10,000 IU/day supplementation.					
Cell Membrane Protection								
G6PD (rs1050828)		CC 99.7%	Information coming soon.					
G6PD (rs1050829)		TT 98.9%						
G6PD	100%		-					
SHBG								
SHBG (rs1799941)		GG 58.0%	Var	iants in the SHBG gene may cause dysreg	ulation in testoster	one and estro	gen levels and	
			low (esp test and	ered progesterone. Hormone testing may becially older men), SHBG variants may in osterone levels. For women, SHGB variar rogen levels overall.	y be in order if horr dicate more circula hts may indicate les	nonal sympto ating SHBG res is SHBG resulti	ms exist. For Mei ulting in lowered ing in higher	n 1
SHBG	100%		Ine	re are no variants in the SHBG genes. This	s lessens the chang	es of normona	al issues from SH	BG.
Cardiovascular Genes				Product Name	SNP Total	Lab Total	Symptoms	
		1		Circulation Accelerator	8.66	#N/A	#N/A	
ACE Del 16 (rs4343)	1	GA 49.5%	Var	iants in these genes may contribute to cir	culatory issues. Mo	ore informatio	n coming soon.	
ADD1 G460W (rs4961)		GG 65.0%						
AGT M235T/C4072T (rs699)	2	GG 20.4%						
MTHFR C677T (rs1801133)	1	GA 45.0%						
Cardio Protection	50%		The con	more SNPs in these genes, the higher the bined with carnitine and ACAT variants.	e risk for cardiovas	cular issues, es	specially when	
HFE				Product Name	SNP Total	Lab Total	Symptoms	
				HFE Assist	8.35	#N/A	#N/A	
HFE C282Y (rs1800562)		GG 89.2%	H63	D represents a SNP that accounts for a m	nild form of heredit	ary hemochro	matosis (HH), an	1
HFE H63D (rs1799945)		CC 74.4%	the	body's ability to regulate uptake of iron,	causing increased i	ntestinal iron	absorption. The	pt
HFE S65C (rs1800730)		AA 97.2%	mo	st common form is caused by mutations i	n the HFE gene, wh	nich are inherit	ted recessively.	
HFE (rs1572982)	1	GA 49.1%	Am	utation at amino acid 282 (C282Y) was fo	ound to be homozy	gous in 83 per	cent of patients	
HFE 6382T>G (rs2794719)		TT 36.6%	wit	n HH. This is a point mutation from guani	ne to adenine, resu	Ilting in a miss	ense mutation fr	om
HFE 8828T>C (rs2071303)	1	TC 44.0%	Cyst	eine to tyrosine. Such mutations are com	imonly found in pe	ople with Euro	pean ancestry.	
			The oth cop can the C28 actu not con and	three most common HH-causing mutatic er mutations in the HFE gene have been l ies of the C282Y mutation. The H63D mut y a copy of the mutation, and about 3% k C282Y mutation, and only causes sympto 2Y mutations. Even then, only a small fra ially exhibit evidence of iron overload. Ac exhibit any symptoms and are not at risk mon, and will also only cause symptoms S65C/C282Y single mutation individuals,	ons in the HFE gene inked to HH. 60-90 tation is also quite have two copies. Th oms when someone ction of people wit dditionally, those w for iron overload. if in combination w symptoms are usu	e are C282Y an % of people w common, abo his mutation is has both the h one copy of tho have two of The S65C mut vith C282Y. Fo ally mild if the	d S65C At least 2 ith HH have two ut 20% of people not as severe as H63D and the each mutation copies of H63D do ation is less r both H63D/C28 by develop at all.	17 3 0 32Y
HFE	83%							

Iron oxidation Potential				Product Name	SNP Total	Lab Total	Symptoms
				HFE Assist	8.35	#N/A	#N/A
				Pro SOD/Catalase Support	7.83	#N/A	#N/A
				GSH Assist	4.63	#N/A	#N/A
				Pro NADH	1.5	#N/A	#N/A
BHMT-08 (rs651852)		CC 27.3%	HFE	SNPS, in combination with these others,	may increase the	potential for O	xidized Iron. M
CBS C699T (rs234706)		GG 45.5%	info	ormation coming soon.			
CTH (rs1021737)	1	GT 40.8%					
GSTM1 (rs1056806)		CC 87.9%					
GSTP1 A114V (rs1138272)		CC 84.3%					
GSTP1 I105V (rs1695)	1	AG 44.4%					
HFE C282Y (rs1800562)		GG 89.2%					
HFE H63D (rs1799945)		CC 74.4%					
HFE S65C (rs1800730)		AA 97.2%					
SOD2 (rs2758331)	2	AA 22.9%					
SOD2 A16V (rs4880)	2	GG 24.4%					
SOD3 (rs1799895)		CC 97.7%					
SOD3 (rs2855262)	1	TC 45.7%					
Iron Oxidation Potential	73%						

DNA Repair

DNA repair genes code the proteins whose normal function is to correct errors that arise when cells duplicate their DNA prior to cell division. These errors in the DNA can occur from things such as ultraviolet light, inhaled cigarette smoke, or endogenous weak mutagens.

Mutations in the DNA repair genes can lead to a failure in correcting the DNA, which in turn allows subsequent mutations to accumulate.

If the rate of DNA damage exceeds the capacity of the cell to repair itself, the buildup of errors can overwhelm the cell.

Gene Name	Variants	Metrics					
mutL homolog 1				Product Name	SNP Total	Lab Total	Symptoms
				Cellular Health Assist	7.74	#N/A	#N/A
MLH1 (rs1800734)	2	AA 5.6%	The	MLH1 gene provides the instructions for n	naking a protein t	hat plays an e	ssential role in DNA
MLH1 (rs35045067)		AA 99.9%	rep	air. This protein helps fix mistakes that are	made when DNA	is copied in D	NA replication in
		-	pie				
MLH1	50%						

Patient: First/Last Name			
Ataxia telangiectasia mutated			
ATM (rs1801516)		GG 73.8%	The main role of ATM is to repair double-stranded DNA breaks.
ATM (rs664143)	2	GG 34.9%	The first 9 are shown to be the most relevant, and the last 9 are included for informational
ATM (rs664677)	2	TT 35.1%	research purposes.
ATM (rs1801673)		AA 98.4%	Studios have shown that variants in the most relevant genes listed can increase chances of colls
ATM (rs1800058)		CC 96.4%	being damaged from oxidative stress and not repairing as quickly. It would be advantageous for
ATM (rs1800056)		TT 97.5%	individuals with these variants to reduce exposure to free radical producing agents and support
ATM (rs1800054)		CC 97.8%	
ATM (rs3218707)		GG 99.7%	For now, we have no suggested protocols, other than adequately controlling oxidative stress. This
ATM (rs3092856)		CC 99.5%	information is just being presented now for research purposes.
ATM (rs623860)	2	2 TT 35.1%	
ATM (rs2235006)		TT 99.8%	
ATM (rs3092857)		AA 99.8%	
ATM (rs227060)	2	TT 11.2%	
ATM (rs227062)	2	AA 33.3%	
ATM (rs17412803)		AA 92.4%	
ATM (rs227092)	2	TT 31.8%	
ATM (rs600931)	2	TT 33.2%	
ATM (Most Relevant)	78%		
ATM (All Genes)	59%		

Urea Cycle

Ammonia is the product of oxidative deamination reactions and is a toxin even in small amounts and must be removed from the body. The urea cycle facilitates the removal of ammonia as urea. The ammonia is first converted into urea in the liver. After conversion, the urea is then transported to the kidneys where it is excreted.

A urea cycle disorder can occur if there is a mutation that results in a deficiency of CPS1, OTC, ASS1, ASL, or ARG1 which could result in higher ammonia concentration in the blood.

Gene Name	Variants	Metrics						
Carbamoyl-Phosphate Synthase				Product Name	SNP Total	Lab Total	Symptoms	
1				Ammonia Scavenger	5.62	#N/A	#N/A	
				A-L-O Formula	0	#N/A	#N/A	
CPS1 (rs918233)	2	TT 42.7%	The enzyme encoded by this gene catalyzes the synthesis of carbamoyl phosphat		phate from ammo	onia		
CPS1 (rs1509821)		CC 81.6%	anc	l bicarbonate. This synthesis is the first ste	p in the Urea Cyc	e.		
CPS1 (rs981024)		GG 36.5%	Car	bamoyl phosphate is an intermediary meta	abolite in nitrogei	n disposal.		
CPS1 (rs2012564)		AA 35.6%] m	utated CPS1 gene may result in a carband	yl nhosnhate syn	thatasa Lanzy	me that is smalle	ar
CPS1 (rs17773128)		CC 85.4%	tha	n normal, not correct in shape, or the enzy	me may not be p	roduced at all		
CPS1 (rs6749597)		GG 74.3%	C+	dias have shown that polymorphisms in th	o CBS1 gono have	hoon accociat	tod with pulmona	201
CPS1 (rs2887913)		AA 36.5%	hyp	ertension. Polymorphisms in CPS1 may als	to reduce the pro-	duction of nitr	ic oxide (NO). A	згу
CPS1 (rs9789405)		CC 74.3%	red	uced amount of nitric oxide can also lead t	o circulatory prol	olems.		
CPS1 (rs2287603)		AA 64.4%						
CPS1 (rs2287602)		AA 74.6%						
CPS1 (rs10515951)		GG 85.7%						
CPS1 (rs6714124)		CC 25.9%						
CPS1 (rs7573258)		GG 18.1%						
CPS1 (rs2371000)		TT 18.0%						
CPS1 (rs2371001)		AA 25.7%						
CPS1 (rs3821135)		TT 76.9%						
CPS1 (rs7607205)		TT 35.7%						
CPS1 (rs12468557)		CC 40.6%						
CPS1 (rs2302909)		GG 84.5%						
CPS1 (rs2371011)	2	GG 8.7%						
CPS1 (rs13010236)		TT 82.6%						
CPS1 (rs2287598)	2	GG 67.8%						
CPS1 (rs6435580)		CC 45.6%						
CPS1 (rs2270476)		GG 88.2%						
CPS1 (rs12997383)		CC 75.6%						
CPS1 (rs4672587)	2	GG 10.3%						
CPS1 (rs4567871)		CC 75.8%						
CPS1	85%							
Ornithine Transcarbamylase				Product Name	SNP Total	Lab Total	Symptoms	
			1	Ammonia Scavenger	5.62	#N/A	#N/A	
				A-L-O Formula	0	#N/A	#N/A	
OTC (rs72554348)		GG 99.9%	The	OTC gene is responsible for providing the	instructions for n	naking the enz	yme ornithine	
OTC (rs7056866)	1	GA 49.1%	trai	nscarbamylase Ornithine transcarbamylas	e controls the rea	ction betweer	n carbamoyl	
OTC (rs5917584)	1	CT 31.2%	pnc	osphale (From the first step of the urea cyc	lie) with ornithine	e to form citrul	iirie.	
OTC (rs5963418)		GG 78.7%	Am	nutated OTC gene will not be able to contro	ol the reaction be	tween carbam	oyl phosphate ar	nd
OTC (rs5963419)		TT 47.3%	orn	itnine correctly. This in turn can cause a bu	uidup of ammoni	a in the body.		
OTC (rs12557315)	1	CT 30.3%	1					
отс	75%							
			1					

Argininosuccinate synthase 1				Product Name	SNP Total	Lab Total	Symptoms
<u> </u>				Ammonia Scavenger	5.62	#N/A	#N/A
				A-L-O Formula	0	#N/A	#N/A
ASS1 (rs12554609)		TT 84.4%	The	ASS1 gene is responsible for providing t	he instructions for	making the en	zyme
ASS1 (rs11243372)		AA 32.3%	arg	ininosuccinate synthase 1. Argininosucci	nate synthase 1 cor	trols the react	tion between t
ASS1 (rs4740158)	2	CC 55.5%	arg	ininosuccinic acid.	step of the drea cy	ciej anu aspai	
ASS1 (rs914983)	2	GG 45.1%	^ ~	autotod ASS1 gong con provent the liver	from processing ov	occ nitrogon i	nto uron This i
ASS1 (rs1615006)		GG 11.4%	car	cause a buildup of ammonia and other l	byproducts of the u	rea cycle (for e	example citrulli
ASS1 (rs1653332)		GG 16.2%	the	bloodstream.			
ASS1 (rs1215988)		GG 39.0%					
ASS1 (rs1215985)	2	TT 56.1%					
ASS1 (rs590086)	2	TT 81.7%					
ASS1 (rs12551145)		GG 86.1%					
ASS1 (rs10901072)		CC 77.6%					
ASS1 (rs652313)	2	GG 74.8%					
ASS1 (rs1215972)	2	AA 76.0%					
ASS1 (rs41302903)	1	GA 11.3%					
ASS1 (rs75912463)		TT 97.8%					
ASS1 (rs540140)		GG 51.8%					
ASS1 (rs480313)		GG 51.6%					
ASS1 (rs11243474)		GG 75.2%					
ASS1 (rs474330)		GG 47.8%					
ASS1 (rs17147023)		TT 59.0%					
ASS1 (rs553696)		AA 45.5%					
ASS1 (rs12375699)	2	TT 19.2%					
ASS1 (rs634432)	2	TT 71.7%					
ASS1 (rs544701)		AA 76.1%					
ASS1	65%						
Argininosuccinate Lyase				Product Name	SNP Total	Lab Total	Symptoms
			1	Ammonia Scavenger	5.62	#N/A	#N/A
				A-L-O Formula	0	#N/A	#N/A
ASL (rs12530898)		GG 91.7%	The	ASL gene is responsible for providing th	e instructions for m	aking the prot	ein
ASL (rs313830)	1	TC 37.6%	argininosuccinate lyase. Argininosuccinate lyase creates arginine and fumarate from		te from later broken de		
ASL (rs313829)	1	AG 40.8%	inte	o urea and is excreted from the body.	of the drea cycle).	ne arginine is	
			A n bui	nutated ASL gene may not be able to forr Idup of ammonia in the blood.	m arginine and fum	arate properly	. This could lea
ASL	67%						

Arginase 1				Product Name	SNP Total	Lab Total	Symptoms
				Ammonia Scavenger	5.62	#N/A	#N/A
				A-L-O Formula	0	#N/A	#N/A
ARG1 (rs2246012)		TT 70.7%	The	ARG1 gene is responsible for providing the	instructions for	making the en	zyme arginase.
			Argi argi excr the A m of a	inase controls the last step of the urea cycle nine (From the fourth step in the urea cycle reted from the body. Ornithine is also produ cycle. uutated ARG1 gene may not be able to from mmonia and arginine in the body.	 In this step, and) and converts t uced in this react a stable arginas 	ginase remove his nitrogen in tion which is th e enzyme. This	s nitrogen from to urea to be nen used to repea s can cause a build
ARG1	100%						

Variants that Impact Exercise and Fitness Potential

Gene Name	Variants	Metrics	
Muscle Fiber Composition			
ACTN3 (rs1815739)		CC 31.8%	Muscles are made up of two main types of muscle fibers, "fast-twitch" and "slow-twitch." Endurance athletes tend to have more slow-twitch muscle, while sprinters tend to have more fast-twitch muscle. Some of the variation in muscle fibers is dependent on a protein called alpha-actinin-3. The ACTN3 gene contains instructions for making alpha-actinin-3. The alpha-actinin-3 protein can be found in certain types of fast-twitch muscle fibers. People who make this protein tend to have a greater proportion of fast-twitch muscle and are better sprinters than people who do not make this protein.
Muscle Fiber Composition	100%		With 0 variants in the ACTN3 gene, this person has fast-twitch muscle fiber and is likely a sprinter.
Aerobic Exercise Potential			
ADRB2 (rs1042713)	2	GG 38.6%	Our bodies need oxygen while exercising. VO2 max is a test that can be used by scientist to
ADRB2 (rs1042714)	2	GG 16.9%	measure the optimum rate at which someone's body can effectively use oxygen when
PPARGC1A (rs8192678)	2	TT 11.0%	natural VO2 max capacity.
VEGF (rs833069)	1	CT 43.6%	Studios have shown that individuals with a higher number of variants in these sames are less
	•		responsive to endurance training.
Aerobic Exercise Potential	13%		
Exercise Recovery Speed			
CRP (rs1205)	2	CC 43.9%	Research has shown that certain genetic factors can determine whether or not someone can
IL6 (rs1800795)		GG 38.7%	quickly recover after workouts.
IL6R (rs4129267)	1	TC 48.1%	Studies have shown that individuals with variations in these genes require longer recovery times
SOD2 A16V (rs4880)	2	GG 24.4%	due to higher levels of inflammation during strenuous exercise.
TNFA (rs1800629)		GG 72.0%	
Exercise Recovery Speed	50%		

Exercise Injury Risk			
COL1A1 (rs1800012)	2	CC 67.9%	Research has shown that certain genetic factors can determine an individuals exercise injury risk.
COL5A1 (rs12722)	1	CT 46.9%	Studies have shown that individual's with variations in these genes are at higher risk for tendon
GDF (rs224329)		CC 36.9%	and ligament injuries.
Exercise Injury Risk	50%		
FTO			
			FTO or Fat Mass and Obesity Associated, is a Protein Coding gene. Variations in this gene may cause growth delay, developmental delay, facial dysmorphism and overnutrition. All 63 of the FTO SNPs can be viewed in the Gene Report.
FTO	52%		
FADS			
FADS1 (rs174546)		CC 45.1%	The proteins encoded by the FADS1, FAD2, and FADS3 genes are members of the fatty acid
FADS1 (rs174547)		TT 45.1%	desaturase (FADS) gene family. Desaturase enzymes regulate the unsaturation of fatty acids
FADS1 (rs174548)		CC 49.2%	
FADS1 (rs174549)		GG 50.6%	A fatty acid is a carboxylic acid with a long aliphatic chain. This aliphatic chain can either be saturated or unsaturated. Eatty acids that have carbon-carbon double bonds are known as
FADS1 (rs174550)		TT 45.1%	unsaturated. Fatty acids without double bonds are known as saturated.
FADS1 (rs174556)		CC 50.8%	Eatty acids are usually derived from triglycerides or phospholipids. Eatty acids are important
FADS2 (rs174570)		CC 73.2%	sources of fuel because, when they are metabolized, they yield large quantities of ATP. Fatty acid
FADS2 (rs1535)		AA 44.6%	composition in membranes plays an important role in cellular processes. Many cell types can use
FADS2 (rs174575)		CC 55.9%	
FADS2 (rs174576)		CC 43.4%	Variations in these genes may affect long-chain polyunsaturated fatty acids metabolism.
FADS2 (rs2072114)		AA 77.5%	
FADS2 (rs174579)		CC 63.3%	
FADS2 (rs2851682)		AA 81.9%	
FADS2 (rs174592)		AA 39.7%	
FADS2 (rs174602)		TT 60.6%	
FADS2 (rs498793)		TT 16.7%	
FADS2 (rs174611)		TT 51.9%	
FADS2 (rs482548)		CC 82.2%	
FADS3 (rs174450)	2	TT 27.4%	
FADS3 (rs1000778)	2	GG 53.7%	
FADS1	100%		
FADS2	100%		
FADS3	0%		
FADS Total	90%		

Electrical Sensitivity Potential

Gene Name	Variants	Metrics	
CACNA1C			
CACNA1C (rs216013)		AA 70.5%	This gene encodes an alpha-1 subunit of a voltage-dependent calcium channel. Calcium channels
CACNA1C (rs2159100)		CC 45.5%	mediate the influx of calcium ions into the cell upon membrane polarization.
CACNA1C (rs1006737)		GG 45.4%	Variants in these genes may impact the potential to have negative effects from high levels of electrical field exposure.
CACNA1C (rs2302729)	1	CT 29.2%	
CACNA1C	88%		

Lyme Study Phase I SNPs

These are the SNPS that were found to be most prevalent for individuals with chronic Lyme, and is not a test for Lyme. Inherited genetic mutations when expressed may reduce enzyme production. This can lead to, nutrient deficiencies, an increased production of free radicals or other toxic substances, or a slow clearing of toxic substances. Any one of these or a combination of may have the potential to allow Lyme to be resistant to traditional treatment by suppressing the immune system or susceptible to creating toxic conditions.

Gene Name	Variants	Metrics	
HFE and Potential Hydroxyl Radical Production SNPs			
HFE C282Y (rs1800562)		GG 89.2%	The following SNPs may increase the potential of the Fenton Reaction and those with Lyme had a
HFE H63D (rs1799945)		CC 74.4%	higher number of SNPs in each of the genes. CBS699 and BHMT-08 may increase the cysteine, while the glutathione variants may slow the conversion of cysteine into glutathione. Variants in SOD genes may slow the ability to neutralize the hydroxyl radicals. Further research is needed to determine if iron oxidation from the Fenton Reaction is a contributing factor to those with chronic Lyme, and if nutritional interventions with nutrients that may slow iron absorption, regulate iron, support cysteine to glutathione conversion and NADH to recycle glutathione and superoxide dismutase may be an appropriate holistic support.
CBS C699T (rs234706)		GG 45.5%	
BHMT-08 (rs651852)		CC 27.3%	
SOD2 (rs2758331)	2	AA 22.9%	
SOD2 A16V (rs4880)	2	GG 24.4%	
GSTP1 A114V (rs1138272)		CC 84.3%	
GSTP1 I105V (rs1695)	1	AG 44.4%	
CTH (rs1021737)	1	GT 40.8%	
PEMT (rs4244593)		TT 17.0%	
PEMT (rs7946)	1	CT 40.9%	
PEMT (rs4646406)		TT 25.7%	
HFE and Potential Hydroxyl Radical Production SNPs	71%		
Mitochondrial Function SNPs			
SLC22A5 (rs17622208)	1	GA 48.1%	The following SNPs relate to mitochondrial function.
SLC22A5 (rs2073643)	1	TC 49.1%	These findings may suggest that lowered energy production in the Krebs Cycle, may be a contributing factor to Chronic Lyme. Further studies of these findings are needed to confirm if
SLC22A5 (rs1045020)		CC 79.0%	
ACAT-2 (rs3465)		GG 38.9%	these observations are clinically relevant, and if nutritional intervention with carnitine, choline,
ACAT-2 (rs3798211)	2	CC 31.1%	NADG, COULD and pantethene may be a useful therapy when these variants are present.
ACAT-2 (rs25683)	2	GG 31.4%	
NDUFS7 (rs1142530)	1	CT 46.0%	
Mitochondrial Function SNPs	50%		

Methylation Cycle SNPs				
MTHFR C677T (rs1801133)	1	GA 45.0%	These findings may suggest that an increased amount of SNPs in the MTHFR gene, in particular,	
MTHFR A1298C (rs1801131)		TT 47.7%	and the entire Methylation pathway, may be a contributing factor in chronic Lyme. Further	
	750/		As a result of these observations, further analysis on a larger scale, and other lab testing may be warranted to see if these observed variants play a role in Chronic Lyme Disease and if supplementation of methyl folate, methyl B12, choline, B6, TMG and SAMe may be helpful holistic therapies.	
Methylation Cycle SNPs	/5%			
Urea Cycle SNPs				
CPS1 (rs1509821)		CC 81.6%	The following SNPs relate to the Urea Cycle.	
CPS1 (rs6435580)		CC 45.6%	 As a result of these observations, larger scale testing and associated lab work may be needed see if these variants create increased ammonia burden and are clinically significant in those wi 	
CPS1 (rs12468557)		CC 40.6%		
CPS1 (rs7607205)		TT 35.7%	Chronic Lyme Disease, and if supporting the Urea Cycle and ammonia clearance would be an	
ASS1 (rs12375699)	2	TT 19.2%	appropriate as well.	
ARG2 (rs3742879)	1	AG 40.2%		
ARG2 (rs742869)	1	GA 47.8%		
Urea Cycle SNPs	71%			
Detoxification SNPs		•		
CYP1A1*4 C2453A (rs1799814)		GG 91.4%	The following SNPs relate to detoxification.	
CYP1B1 N453S (rs1800440)		TT 67.9%	As a result of these observations, larger scale testing and associated lab work may be peeded to	
PON1 (rs854561)	2	TT 12.9%	see if these variants are clinically significant in those with Chronic Lyme Disease, and if	
SOD2 (rs2758331)	2	AA 22.9%	supporting the detox mechanisms controlled by CYP, PON1, SOD, and glutathione would be an	
GSTP1 A114V (rs1138272)		CC 84.3%	should be investigated as well.	
Detoxification SNPs	60%			
Glutamate SNPs				
GAD1 (rs3791850)		GG 57.9%	The following SNPs relate to glutamate.	
GAD1 (rs3828275)		CC 32.3%	As a result of these findings, future research may be needed to see if higher glutamate levels and	
GAD1 (rs12185692)		CC 35.7%	peroxynitrite are associated with symptoms related to Lyme Disease, or if supporting the	
GAD1 (rs3791878)	2	TT 9.7%	conversion into GABA may be a part of a holistic treatment plan.	
Glutamate SNPs	75%			
DNA Repair SNPs				
ATM (rs1801516)		GG 73.8%	If those with chronic Lyme disease have higher rates of oxidative stress due to mitochondrial	
			dysfunction, lowered ability to detox, iron oxidation, etc., higher rates of variants in the ATM genes may also play a contributing role. Further research may be warranted.	
DNA Repair SNPs	100%			
Total Lyme Study SNPs				
Total Lyme Study Phase I SNPs	67%			